Approximate nonradial solutions for the Lane-Emden problem in the ball
In this paper we provide a numerical approximation of bifurcation branches from nodal radial solutions of the Lane Emden Dirichlet problem in the unit ball in ℝ2, as the exponent of the nonlinearity varies. We consider solutions with two or three nodal regions. In the first case our numerical result...
Enregistré dans:
Auteurs principaux: | Fazekas Borbála, Pacella Filomena, Plum Michael |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/98dbbb81b61b46b0841fbb04ff98585d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Bifurcation analysis for a modified quasilinear equation with negative exponent
par: Chen Siyu, et autres
Publié: (2021) -
Lane-Emden equations perturbed by nonhomogeneous potential in the super critical case
par: Ma Yong, et autres
Publié: (2021) -
A variant of Clark’s theorem and its applications for nonsmooth functionals without the global symmetric condition
par: Huang Chen
Publié: (2021) -
New asymptotically quadratic conditions for Hamiltonian elliptic systems
par: Liao Fangfang, et autres
Publié: (2021) -
Existence and concentration of positive solutions for a critical p&q equation
par: Costa Gustavo S., et autres
Publié: (2021)