Extracellular Electron Transfer Powers <named-content content-type="genus-species">Enterococcus faecalis</named-content> Biofilm Metabolism
ABSTRACT Enterococci are important human commensals and significant opportunistic pathogens. Biofilm-related enterococcal infections, such as endocarditis, urinary tract infections, wound and surgical site infections, and medical device-associated infections, often become chronic upon the formation...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99197a56cd094425a199d1639eb5b6d4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:99197a56cd094425a199d1639eb5b6d4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:99197a56cd094425a199d1639eb5b6d42021-11-15T15:53:27ZExtracellular Electron Transfer Powers <named-content content-type="genus-species">Enterococcus faecalis</named-content> Biofilm Metabolism10.1128/mBio.00626-172150-7511https://doaj.org/article/99197a56cd094425a199d1639eb5b6d42018-05-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00626-17https://doaj.org/toc/2150-7511ABSTRACT Enterococci are important human commensals and significant opportunistic pathogens. Biofilm-related enterococcal infections, such as endocarditis, urinary tract infections, wound and surgical site infections, and medical device-associated infections, often become chronic upon the formation of biofilm. The biofilm matrix establishes properties that distinguish this state from free-living bacterial cells and increase tolerance to antimicrobial interventions. The metabolic versatility of the enterococci is reflected in the diversity and complexity of environments and communities in which they thrive. Understanding metabolic factors governing colonization and persistence in different host niches can reveal factors influencing the transition to biofilm pathogenicity. Here, we report a form of iron-dependent metabolism for Enterococcus faecalis where, in the absence of heme, extracellular electron transfer (EET) and increased ATP production augment biofilm growth. We observe alterations in biofilm matrix depth and composition during iron-augmented biofilm growth. We show that the ldh gene encoding l-lactate dehydrogenase is required for iron-augmented energy production and biofilm formation and promotes EET. IMPORTANCE Bacterial metabolic versatility can often influence the outcome of host-pathogen interactions, yet causes of metabolic shifts are difficult to resolve. The bacterial biofilm matrix provides the structural and functional support that distinguishes this state from free-living bacterial cells. Here, we show that the biofilm matrix can immobilize iron, providing access to this growth-promoting resource which is otherwise inaccessible in the planktonic state. Our data show that in the absence of heme, Enterococcus faecalis l-lactate dehydrogenase promotes EET and uses matrix-associated iron to carry out EET. Therefore, the presence of iron within the biofilm matrix leads to enhanced biofilm growth.Damien KeoghLing Ning LamLucinda E. DoyleArtur MatysikShruti PavagadhiShivshankar UmashankarPui Man LowJennifer L. DaleYiyang SongSean Pin NgChris B. BoothroydGary M. DunnySanjay SwarupRohan B. H. WilliamsEnrico MarsiliKimberly A. KlineAmerican Society for MicrobiologyarticleEnterococcus faecalisbiofilmextracellular electron transferironmetabolismMicrobiologyQR1-502ENmBio, Vol 9, Iss 2 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Enterococcus faecalis biofilm extracellular electron transfer iron metabolism Microbiology QR1-502 |
spellingShingle |
Enterococcus faecalis biofilm extracellular electron transfer iron metabolism Microbiology QR1-502 Damien Keogh Ling Ning Lam Lucinda E. Doyle Artur Matysik Shruti Pavagadhi Shivshankar Umashankar Pui Man Low Jennifer L. Dale Yiyang Song Sean Pin Ng Chris B. Boothroyd Gary M. Dunny Sanjay Swarup Rohan B. H. Williams Enrico Marsili Kimberly A. Kline Extracellular Electron Transfer Powers <named-content content-type="genus-species">Enterococcus faecalis</named-content> Biofilm Metabolism |
description |
ABSTRACT Enterococci are important human commensals and significant opportunistic pathogens. Biofilm-related enterococcal infections, such as endocarditis, urinary tract infections, wound and surgical site infections, and medical device-associated infections, often become chronic upon the formation of biofilm. The biofilm matrix establishes properties that distinguish this state from free-living bacterial cells and increase tolerance to antimicrobial interventions. The metabolic versatility of the enterococci is reflected in the diversity and complexity of environments and communities in which they thrive. Understanding metabolic factors governing colonization and persistence in different host niches can reveal factors influencing the transition to biofilm pathogenicity. Here, we report a form of iron-dependent metabolism for Enterococcus faecalis where, in the absence of heme, extracellular electron transfer (EET) and increased ATP production augment biofilm growth. We observe alterations in biofilm matrix depth and composition during iron-augmented biofilm growth. We show that the ldh gene encoding l-lactate dehydrogenase is required for iron-augmented energy production and biofilm formation and promotes EET. IMPORTANCE Bacterial metabolic versatility can often influence the outcome of host-pathogen interactions, yet causes of metabolic shifts are difficult to resolve. The bacterial biofilm matrix provides the structural and functional support that distinguishes this state from free-living bacterial cells. Here, we show that the biofilm matrix can immobilize iron, providing access to this growth-promoting resource which is otherwise inaccessible in the planktonic state. Our data show that in the absence of heme, Enterococcus faecalis l-lactate dehydrogenase promotes EET and uses matrix-associated iron to carry out EET. Therefore, the presence of iron within the biofilm matrix leads to enhanced biofilm growth. |
format |
article |
author |
Damien Keogh Ling Ning Lam Lucinda E. Doyle Artur Matysik Shruti Pavagadhi Shivshankar Umashankar Pui Man Low Jennifer L. Dale Yiyang Song Sean Pin Ng Chris B. Boothroyd Gary M. Dunny Sanjay Swarup Rohan B. H. Williams Enrico Marsili Kimberly A. Kline |
author_facet |
Damien Keogh Ling Ning Lam Lucinda E. Doyle Artur Matysik Shruti Pavagadhi Shivshankar Umashankar Pui Man Low Jennifer L. Dale Yiyang Song Sean Pin Ng Chris B. Boothroyd Gary M. Dunny Sanjay Swarup Rohan B. H. Williams Enrico Marsili Kimberly A. Kline |
author_sort |
Damien Keogh |
title |
Extracellular Electron Transfer Powers <named-content content-type="genus-species">Enterococcus faecalis</named-content> Biofilm Metabolism |
title_short |
Extracellular Electron Transfer Powers <named-content content-type="genus-species">Enterococcus faecalis</named-content> Biofilm Metabolism |
title_full |
Extracellular Electron Transfer Powers <named-content content-type="genus-species">Enterococcus faecalis</named-content> Biofilm Metabolism |
title_fullStr |
Extracellular Electron Transfer Powers <named-content content-type="genus-species">Enterococcus faecalis</named-content> Biofilm Metabolism |
title_full_unstemmed |
Extracellular Electron Transfer Powers <named-content content-type="genus-species">Enterococcus faecalis</named-content> Biofilm Metabolism |
title_sort |
extracellular electron transfer powers <named-content content-type="genus-species">enterococcus faecalis</named-content> biofilm metabolism |
publisher |
American Society for Microbiology |
publishDate |
2018 |
url |
https://doaj.org/article/99197a56cd094425a199d1639eb5b6d4 |
work_keys_str_mv |
AT damienkeogh extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT lingninglam extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT lucindaedoyle extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT arturmatysik extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT shrutipavagadhi extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT shivshankarumashankar extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT puimanlow extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT jenniferldale extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT yiyangsong extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT seanpinng extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT chrisbboothroyd extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT garymdunny extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT sanjayswarup extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT rohanbhwilliams extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT enricomarsili extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism AT kimberlyakline extracellularelectrontransferpowersnamedcontentcontenttypegenusspeciesenterococcusfaecalisnamedcontentbiofilmmetabolism |
_version_ |
1718427232476594176 |