Exploring structure-property relationships in magnesium dissolution modulators

Abstract Small organic molecules that modulate the degradation behavior of Mg constitute benign and useful materials to modify the service environment of light metal materials for specific applications. The vast chemical space of potentially effective compounds can be explored by machine learning-ba...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tim Würger, Di Mei, Bahram Vaghefinazari, David A. Winkler, Sviatlana V. Lamaka, Mikhail L. Zheludkevich, Robert H. Meißner, Christian Feiler
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/9927113aea7c4119b7eabc65571a210f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9927113aea7c4119b7eabc65571a210f
record_format dspace
spelling oai:doaj.org-article:9927113aea7c4119b7eabc65571a210f2021-12-02T11:45:58ZExploring structure-property relationships in magnesium dissolution modulators10.1038/s41529-020-00148-z2397-2106https://doaj.org/article/9927113aea7c4119b7eabc65571a210f2021-01-01T00:00:00Zhttps://doi.org/10.1038/s41529-020-00148-zhttps://doaj.org/toc/2397-2106Abstract Small organic molecules that modulate the degradation behavior of Mg constitute benign and useful materials to modify the service environment of light metal materials for specific applications. The vast chemical space of potentially effective compounds can be explored by machine learning-based quantitative structure-property relationship models, accelerating the discovery of potent dissolution modulators. Here, we demonstrate how unsupervised clustering of a large number of potential Mg dissolution modulators by structural similarities and sketch-maps can predict their experimental performance using a kernel ridge regression model. We compare the prediction accuracy of this approach to that of a prior artificial neural networks study. We confirm the robustness of our data-driven model by blind prediction of the dissolution modulating performance of 10 untested compounds. Finally, a workflow is presented that facilitates the automated discovery of chemicals with desired dissolution modulating properties from a commercial database. We subsequently prove this concept by blind validation of five chemicals.Tim WürgerDi MeiBahram VaghefinazariDavid A. WinklerSviatlana V. LamakaMikhail L. ZheludkevichRobert H. MeißnerChristian FeilerNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENnpj Materials Degradation, Vol 5, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Tim Würger
Di Mei
Bahram Vaghefinazari
David A. Winkler
Sviatlana V. Lamaka
Mikhail L. Zheludkevich
Robert H. Meißner
Christian Feiler
Exploring structure-property relationships in magnesium dissolution modulators
description Abstract Small organic molecules that modulate the degradation behavior of Mg constitute benign and useful materials to modify the service environment of light metal materials for specific applications. The vast chemical space of potentially effective compounds can be explored by machine learning-based quantitative structure-property relationship models, accelerating the discovery of potent dissolution modulators. Here, we demonstrate how unsupervised clustering of a large number of potential Mg dissolution modulators by structural similarities and sketch-maps can predict their experimental performance using a kernel ridge regression model. We compare the prediction accuracy of this approach to that of a prior artificial neural networks study. We confirm the robustness of our data-driven model by blind prediction of the dissolution modulating performance of 10 untested compounds. Finally, a workflow is presented that facilitates the automated discovery of chemicals with desired dissolution modulating properties from a commercial database. We subsequently prove this concept by blind validation of five chemicals.
format article
author Tim Würger
Di Mei
Bahram Vaghefinazari
David A. Winkler
Sviatlana V. Lamaka
Mikhail L. Zheludkevich
Robert H. Meißner
Christian Feiler
author_facet Tim Würger
Di Mei
Bahram Vaghefinazari
David A. Winkler
Sviatlana V. Lamaka
Mikhail L. Zheludkevich
Robert H. Meißner
Christian Feiler
author_sort Tim Würger
title Exploring structure-property relationships in magnesium dissolution modulators
title_short Exploring structure-property relationships in magnesium dissolution modulators
title_full Exploring structure-property relationships in magnesium dissolution modulators
title_fullStr Exploring structure-property relationships in magnesium dissolution modulators
title_full_unstemmed Exploring structure-property relationships in magnesium dissolution modulators
title_sort exploring structure-property relationships in magnesium dissolution modulators
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9927113aea7c4119b7eabc65571a210f
work_keys_str_mv AT timwurger exploringstructurepropertyrelationshipsinmagnesiumdissolutionmodulators
AT dimei exploringstructurepropertyrelationshipsinmagnesiumdissolutionmodulators
AT bahramvaghefinazari exploringstructurepropertyrelationshipsinmagnesiumdissolutionmodulators
AT davidawinkler exploringstructurepropertyrelationshipsinmagnesiumdissolutionmodulators
AT sviatlanavlamaka exploringstructurepropertyrelationshipsinmagnesiumdissolutionmodulators
AT mikhaillzheludkevich exploringstructurepropertyrelationshipsinmagnesiumdissolutionmodulators
AT roberthmeißner exploringstructurepropertyrelationshipsinmagnesiumdissolutionmodulators
AT christianfeiler exploringstructurepropertyrelationshipsinmagnesiumdissolutionmodulators
_version_ 1718395242524180480