Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography
Abstract Rapid diagnosis of myocardial infarction (MI) using electrocardiography (ECG) is the cornerstone of effective treatment and prevention of mortality; however, conventional interpretation methods has low reliability for detecting MI and is difficulty to apply to limb 6-lead ECG based life typ...
Guardado en:
Autores principales: | Younghoon Cho, Joon-myoung Kwon, Kyung-Hee Kim, Jose R. Medina-Inojosa, Ki-Hyun Jeon, Soohyun Cho, Soo Youn Lee, Jinsik Park, Byung-Hee Oh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9929d36a5ebe44cd8f13f0d280c39c94 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The incidence of myocardial infarction and stroke in head and neck cancer patients
por: Hyun-Keun Kwon, et al.
Publicado: (2021) -
An Artificial Intelligence-Based Alarm Strategy Facilitates Management of Acute Myocardial Infarction
por: Wen-Cheng Liu, et al.
Publicado: (2021) -
Soluble CD93 levels in patients with acute myocardial infarction and its implication on clinical outcome.
por: Jong-Chan Youn, et al.
Publicado: (2014) -
Heart rate variability and incidence of depression during the first six months following first myocardial infarction
por: Wilkowska A, et al.
Publicado: (2019) -
Gender Differences in the Impact of New-Onset Atrial Fibrillation on Long-Term Risk of Ischemic Stroke after Acute Myocardial Infarction
por: Jeong-Eun Yi, et al.
Publicado: (2021)