Spears and shields: attacking and defending deep model co-inference in vehicular crowdsensing networks
Abstract Vehicular CrowdSensing (VCS) network is one of the key scenarios for future 6G ubiquitous artificial intelligence. In a VCS network, vehicles are recruited for collecting urban data and performing deep model inference. Due to the limited computing power of vehicles, we deploy a device-edge...
Guardado en:
Autores principales: | Maoqiang Wu, Dongdong Ye, Chaorui Zhang, Rong Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9938b451c6c24ecdb58ab6edc2ac9bad |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
PARS: Privacy-Aware Reward System for Mobile Crowdsensing Systems
por: Zhong Zhang, et al.
Publicado: (2021) -
Capacity of Vehicular Ad Hoc Networks Based on Multibeam Directional Transmission
por: Yuhua Wang, et al.
Publicado: (2021) -
A two‐layer attack‐robust protocol for IoT healthcare security
por: Sharafi Afsaneh, et al.
Publicado: (2021) -
Enhancing Feature Point-Based Video Watermarking against Geometric Attacks with Template
por: Zhongze Lv, et al.
Publicado: (2021) -
Towards Secure, Decentralised, and Privacy Friendly Forensic Analysis of Vehicular Data
por: Lydia Negka, et al.
Publicado: (2021)