Blow-up results of the positive solution for a class of degenerate parabolic equations

This paper is devoted to discussing the blow-up problem of the positive solution of the following degenerate parabolic equations: (r(u))t=div(∣∇u∣p∇u)+f(x,t,u,∣∇u∣2),(x,t)∈D×(0,T∗),∂u∂ν+σu=0,(x,t)∈∂D×(0,T∗),u(x,0)=u0(x),x∈D¯.\left\{\begin{array}{ll}{(r\left(u))}_{t}={\rm{div}}(| \nabla u{| }^{p}\nab...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dong Chenyu, Ding Juntang
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/993919078a8748db86a416838e0413a9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper is devoted to discussing the blow-up problem of the positive solution of the following degenerate parabolic equations: (r(u))t=div(∣∇u∣p∇u)+f(x,t,u,∣∇u∣2),(x,t)∈D×(0,T∗),∂u∂ν+σu=0,(x,t)∈∂D×(0,T∗),u(x,0)=u0(x),x∈D¯.\left\{\begin{array}{ll}{(r\left(u))}_{t}={\rm{div}}(| \nabla u{| }^{p}\nabla u)+f\left(x,t,u,| \nabla u\hspace{-0.25em}{| }^{2}),& \left(x,t)\in D\times \left(0,{T}^{\ast }),\\ \frac{\partial u}{\partial \nu }+\sigma u=0,& \left(x,t)\in \partial D\times \left(0,{T}^{\ast }),\\ u\left(x,0)={u}_{0}\left(x),& x\in \overline{D}.\end{array}\right. Here p>0p\gt 0, the spatial region D⊂Rn(n≥2)D\subset {{\mathbb{R}}}^{n}\hspace{0.33em}\left(n\ge 2) is bounded, and its boundary ∂D\partial D is smooth. We give the conditions that cause the positive solution of this degenerate parabolic problem to blow up. At the same time, for the positive blow-up solution of this problem, we also obtain an upper bound of the blow-up time and an upper estimate of the blow-up rate. We mainly carry out our research by means of maximum principles and first-order differential inequality technique.