Blow-up results of the positive solution for a class of degenerate parabolic equations
This paper is devoted to discussing the blow-up problem of the positive solution of the following degenerate parabolic equations: (r(u))t=div(∣∇u∣p∇u)+f(x,t,u,∣∇u∣2),(x,t)∈D×(0,T∗),∂u∂ν+σu=0,(x,t)∈∂D×(0,T∗),u(x,0)=u0(x),x∈D¯.\left\{\begin{array}{ll}{(r\left(u))}_{t}={\rm{div}}(| \nabla u{| }^{p}\nab...
Guardado en:
Autores principales: | Dong Chenyu, Ding Juntang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/993919078a8748db86a416838e0413a9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sharp conditions on global existence and blow-up in a degenerate two-species and cross-attraction system
por: Carrillo Antonio José, et al.
Publicado: (2021) -
Existence of blow-up solutions for quasilinear elliptic equation with nonlinear gradient term
por: Li,Fang, et al.
Publicado: (2014) -
Blow-up solutions with minimal mass for nonlinear Schrödinger equation with variable potential
por: Pan Jingjing, et al.
Publicado: (2021) -
Global attractors for a class of semilinear degenerate parabolic equations
por: Zhu Kaixuan, et al.
Publicado: (2021) -
Blow up and asymptotic behavior of solutions for a p(x)-Laplacian equation with delay term and variable exponents
por: Stanislav Antontsev, et al.
Publicado: (2021)