Facing CAR T Cell Challenges on the Deadliest Paediatric Brain Tumours

Central nervous system (CNS) tumours comprise 25% of the paediatric cancer diagnoses and are the leading cause of cancer-related death in children. Current treatments for paediatric CNS tumours are far from optimal and fail for those that relapsed or are refractory to treatment. Besides, long-term s...

Full description

Saved in:
Bibliographic Details
Main Authors: Cristina Ferreras, Lucía Fernández, Laura Clares-Villa, Marta Ibáñez-Navarro, Carla Martín-Cortázar, Isabel Esteban-Rodríguez, Javier Saceda, Antonio Pérez-Martínez
Format: article
Language:EN
Published: MDPI AG 2021
Subjects:
Online Access:https://doaj.org/article/9946090fa33c4c919326a7cf6ec3fe13
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Central nervous system (CNS) tumours comprise 25% of the paediatric cancer diagnoses and are the leading cause of cancer-related death in children. Current treatments for paediatric CNS tumours are far from optimal and fail for those that relapsed or are refractory to treatment. Besides, long-term sequelae in the developing brain make it mandatory to find new innovative approaches. Chimeric antigen receptor T cell (CAR T) therapy has increased survival in patients with B-cell malignancies, but the intrinsic biological characteristics of CNS tumours hamper their success. The location, heterogeneous antigen expression, limited infiltration of T cells into the tumour, the selective trafficking provided by the blood–brain barrier, and the immunosuppressive tumour microenvironment have emerged as the main hurdles that need to be overcome for the success of CAR T cell therapy. In this review, we will focus mainly on the characteristics of the deadliest high-grade CNS paediatric tumours (medulloblastoma, ependymoma, and high-grade gliomas) and the potential of CAR T cell therapy to increase survival and patients’ quality of life.