A spatial SIS model in heterogeneous environments with vary advective rate

We study a spatial susceptible-infected-susceptible(SIS) model in heterogeneous environments with vary advective rate. We establish the asymptotic stability of the unique disease-free equilibrium(DFE) when $ \mathcal{R}_0 < 1 $ and the existence of the endemic equilibrium when $ \mathcal{R}_0...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaowei An, Xianfa Song
Formato: article
Lenguaje:EN
Publicado: AIMS Press 2021
Materias:
Acceso en línea:https://doaj.org/article/995653125b7446eda87d283ec0d6e8dc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:995653125b7446eda87d283ec0d6e8dc
record_format dspace
spelling oai:doaj.org-article:995653125b7446eda87d283ec0d6e8dc2021-11-09T02:16:51ZA spatial SIS model in heterogeneous environments with vary advective rate10.3934/mbe.20212761551-0018https://doaj.org/article/995653125b7446eda87d283ec0d6e8dc2021-06-01T00:00:00Zhttps://www.aimspress.com/article/doi/10.3934/mbe.2021276?viewType=HTMLhttps://doaj.org/toc/1551-0018We study a spatial susceptible-infected-susceptible(SIS) model in heterogeneous environments with vary advective rate. We establish the asymptotic stability of the unique disease-free equilibrium(DFE) when $ \mathcal{R}_0 < 1 $ and the existence of the endemic equilibrium when $ \mathcal{R}_0 > 1 $. Here $ \mathcal{R}_0 $ is the basic reproduction number. We also discuss the effect of diffusion on the stability of the DFE.Xiaowei AnXianfa Song AIMS Pressarticlespatial sis modelvary advective ratedisease-free equilibriumendemic equilibriumBiotechnologyTP248.13-248.65MathematicsQA1-939ENMathematical Biosciences and Engineering, Vol 18, Iss 5, Pp 5449-5477 (2021)
institution DOAJ
collection DOAJ
language EN
topic spatial sis model
vary advective rate
disease-free equilibrium
endemic equilibrium
Biotechnology
TP248.13-248.65
Mathematics
QA1-939
spellingShingle spatial sis model
vary advective rate
disease-free equilibrium
endemic equilibrium
Biotechnology
TP248.13-248.65
Mathematics
QA1-939
Xiaowei An
Xianfa Song
A spatial SIS model in heterogeneous environments with vary advective rate
description We study a spatial susceptible-infected-susceptible(SIS) model in heterogeneous environments with vary advective rate. We establish the asymptotic stability of the unique disease-free equilibrium(DFE) when $ \mathcal{R}_0 < 1 $ and the existence of the endemic equilibrium when $ \mathcal{R}_0 > 1 $. Here $ \mathcal{R}_0 $ is the basic reproduction number. We also discuss the effect of diffusion on the stability of the DFE.
format article
author Xiaowei An
Xianfa Song
author_facet Xiaowei An
Xianfa Song
author_sort Xiaowei An
title A spatial SIS model in heterogeneous environments with vary advective rate
title_short A spatial SIS model in heterogeneous environments with vary advective rate
title_full A spatial SIS model in heterogeneous environments with vary advective rate
title_fullStr A spatial SIS model in heterogeneous environments with vary advective rate
title_full_unstemmed A spatial SIS model in heterogeneous environments with vary advective rate
title_sort spatial sis model in heterogeneous environments with vary advective rate
publisher AIMS Press
publishDate 2021
url https://doaj.org/article/995653125b7446eda87d283ec0d6e8dc
work_keys_str_mv AT xiaoweian aspatialsismodelinheterogeneousenvironmentswithvaryadvectiverate
AT xianfasong aspatialsismodelinheterogeneousenvironmentswithvaryadvectiverate
AT xiaoweian spatialsismodelinheterogeneousenvironmentswithvaryadvectiverate
AT xianfasong spatialsismodelinheterogeneousenvironmentswithvaryadvectiverate
_version_ 1718441404913418240