Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles

Kai Zhao,1,2,* Yang Zhang,1,2,* Xiaoyan Zhang,1,* Wei Li,1 Ci Shi,1,2 Chen Guo,1 Chunxiao Dai,3 Qian Chen,1 Zheng Jin,3 Yan Zhao,2 Hongyu Cui,2 Yunfeng Wang2 1College of Life Science, Heilongjiang University, 2Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhao K, Zhang Y, Zhang XY, Li W, Shi C, Guo C, Dai CX, Chen Q, Jin Z, Zhao Y, Cui HY, Wang YF
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://doaj.org/article/996ae2ec45db40258d04cc5ed9883e11
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Kai Zhao,1,2,* Yang Zhang,1,2,* Xiaoyan Zhang,1,* Wei Li,1 Ci Shi,1,2 Chen Guo,1 Chunxiao Dai,3 Qian Chen,1 Zheng Jin,3 Yan Zhao,2 Hongyu Cui,2 Yunfeng Wang2 1College of Life Science, Heilongjiang University, 2Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, 3Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, Heilongjiang University, Harbin, People's Republic of China *These authors contributed equally to this work Abstract: Optimal preparation conditions of Newcastle disease virus (NDV) F gene deoxyribonucleic acid (DNA) vaccine encapsulated in chitosan nanoparticles (pFNDV-CS-NPs) were determined. The pFNDV-CS-NPs were prepared according to a complex coacervation method. The pFNDV-CS-NPs were produced with good morphology, high stability, a mean diameter of 199.5 nm, encapsulation efficiency of 98.37%±0.87%, loading capacity of 36.12%±0.19%, and a zeta potential of +12.11 mV. The in vitro release assay showed that the plasmid DNA was sustainably released from the pFNDV-CS-NPs, up to 82.9%±2.9% of the total amount. Cell transfection test indicated that the vaccine expressed the F gene in cells and maintained good bioactivity. Additionally, the safety of mucosal immunity delivery system of the pFNDV-CS-NPs was also tested in vitro by cell cytotoxicity and in vivo by safety test in chickens. In vivo immunization showed that better immune responses of specific pathogen-free chickens immunized with the pFNDV-CS-NPs were induced, and prolonged release of the plasmid DNA was achieved compared to the chickens immunized with the control plasmid. This study lays the foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles. Keywords: Newcastle disease, DNA vaccine, chitosan nanoparticles, mucosal immunity delivery system, immune effectiveness