Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
Severe falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discove...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
eLife Sciences Publications Ltd
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9975f68439c94b6da46fbbde7cbac9a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9975f68439c94b6da46fbbde7cbac9a5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9975f68439c94b6da46fbbde7cbac9a52021-11-22T15:13:43ZImproving statistical power in severe malaria genetic association studies by augmenting phenotypic precision10.7554/eLife.696982050-084Xe69698https://doaj.org/article/9975f68439c94b6da46fbbde7cbac9a52021-07-01T00:00:00Zhttps://elifesciences.org/articles/69698https://doaj.org/toc/2050-084XSevere falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discovered associations. In areas of high malaria transmission, the diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis are imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and white count data. Under this model, we re-analysed clinical and genetic data from 2220 Kenyan children with clinically defined severe malaria and 3940 population controls, adjusting for phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that approximately one-third of cases did not have severe malaria. We propose a data-tilting approach for case-control studies with phenotype mis-labelling and show that this reduces false discovery rates and improves statistical power in genome-wide association studies.James A WatsonCarolyne M NdilaSophie UyogaAlexander MachariaGideon NyutuShebe MohammedCaroline NgetsaNeema MturiNorbert PeshuBenjamin TsofaKirk RockettStije LeopoldHugh KingstonElizabeth C GeorgeKathryn MaitlandNicholas PJ DayArjen M DondorpPhilip BejonThomas N WilliamsChris C HolmesNicholas J WhiteeLife Sciences Publications Ltdarticlesevere malariaGWASdiagnosiscomplete blood countMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
severe malaria GWAS diagnosis complete blood count Medicine R Science Q Biology (General) QH301-705.5 |
spellingShingle |
severe malaria GWAS diagnosis complete blood count Medicine R Science Q Biology (General) QH301-705.5 James A Watson Carolyne M Ndila Sophie Uyoga Alexander Macharia Gideon Nyutu Shebe Mohammed Caroline Ngetsa Neema Mturi Norbert Peshu Benjamin Tsofa Kirk Rockett Stije Leopold Hugh Kingston Elizabeth C George Kathryn Maitland Nicholas PJ Day Arjen M Dondorp Philip Bejon Thomas N Williams Chris C Holmes Nicholas J White Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision |
description |
Severe falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discovered associations. In areas of high malaria transmission, the diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis are imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and white count data. Under this model, we re-analysed clinical and genetic data from 2220 Kenyan children with clinically defined severe malaria and 3940 population controls, adjusting for phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that approximately one-third of cases did not have severe malaria. We propose a data-tilting approach for case-control studies with phenotype mis-labelling and show that this reduces false discovery rates and improves statistical power in genome-wide association studies. |
format |
article |
author |
James A Watson Carolyne M Ndila Sophie Uyoga Alexander Macharia Gideon Nyutu Shebe Mohammed Caroline Ngetsa Neema Mturi Norbert Peshu Benjamin Tsofa Kirk Rockett Stije Leopold Hugh Kingston Elizabeth C George Kathryn Maitland Nicholas PJ Day Arjen M Dondorp Philip Bejon Thomas N Williams Chris C Holmes Nicholas J White |
author_facet |
James A Watson Carolyne M Ndila Sophie Uyoga Alexander Macharia Gideon Nyutu Shebe Mohammed Caroline Ngetsa Neema Mturi Norbert Peshu Benjamin Tsofa Kirk Rockett Stije Leopold Hugh Kingston Elizabeth C George Kathryn Maitland Nicholas PJ Day Arjen M Dondorp Philip Bejon Thomas N Williams Chris C Holmes Nicholas J White |
author_sort |
James A Watson |
title |
Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision |
title_short |
Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision |
title_full |
Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision |
title_fullStr |
Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision |
title_full_unstemmed |
Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision |
title_sort |
improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision |
publisher |
eLife Sciences Publications Ltd |
publishDate |
2021 |
url |
https://doaj.org/article/9975f68439c94b6da46fbbde7cbac9a5 |
work_keys_str_mv |
AT jamesawatson improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT carolynemndila improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT sophieuyoga improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT alexandermacharia improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT gideonnyutu improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT shebemohammed improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT carolinengetsa improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT neemamturi improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT norbertpeshu improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT benjamintsofa improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT kirkrockett improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT stijeleopold improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT hughkingston improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT elizabethcgeorge improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT kathrynmaitland improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT nicholaspjday improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT arjenmdondorp improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT philipbejon improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT thomasnwilliams improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT chrischolmes improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision AT nicholasjwhite improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision |
_version_ |
1718417568495042560 |