Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision

Severe falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discove...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: James A Watson, Carolyne M Ndila, Sophie Uyoga, Alexander Macharia, Gideon Nyutu, Shebe Mohammed, Caroline Ngetsa, Neema Mturi, Norbert Peshu, Benjamin Tsofa, Kirk Rockett, Stije Leopold, Hugh Kingston, Elizabeth C George, Kathryn Maitland, Nicholas PJ Day, Arjen M Dondorp, Philip Bejon, Thomas N Williams, Chris C Holmes, Nicholas J White
Formato: article
Lenguaje:EN
Publicado: eLife Sciences Publications Ltd 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9975f68439c94b6da46fbbde7cbac9a5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9975f68439c94b6da46fbbde7cbac9a5
record_format dspace
spelling oai:doaj.org-article:9975f68439c94b6da46fbbde7cbac9a52021-11-22T15:13:43ZImproving statistical power in severe malaria genetic association studies by augmenting phenotypic precision10.7554/eLife.696982050-084Xe69698https://doaj.org/article/9975f68439c94b6da46fbbde7cbac9a52021-07-01T00:00:00Zhttps://elifesciences.org/articles/69698https://doaj.org/toc/2050-084XSevere falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discovered associations. In areas of high malaria transmission, the diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis are imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and white count data. Under this model, we re-analysed clinical and genetic data from 2220 Kenyan children with clinically defined severe malaria and 3940 population controls, adjusting for phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that approximately one-third of cases did not have severe malaria. We propose a data-tilting approach for case-control studies with phenotype mis-labelling and show that this reduces false discovery rates and improves statistical power in genome-wide association studies.James A WatsonCarolyne M NdilaSophie UyogaAlexander MachariaGideon NyutuShebe MohammedCaroline NgetsaNeema MturiNorbert PeshuBenjamin TsofaKirk RockettStije LeopoldHugh KingstonElizabeth C GeorgeKathryn MaitlandNicholas PJ DayArjen M DondorpPhilip BejonThomas N WilliamsChris C HolmesNicholas J WhiteeLife Sciences Publications Ltdarticlesevere malariaGWASdiagnosiscomplete blood countMedicineRScienceQBiology (General)QH301-705.5ENeLife, Vol 10 (2021)
institution DOAJ
collection DOAJ
language EN
topic severe malaria
GWAS
diagnosis
complete blood count
Medicine
R
Science
Q
Biology (General)
QH301-705.5
spellingShingle severe malaria
GWAS
diagnosis
complete blood count
Medicine
R
Science
Q
Biology (General)
QH301-705.5
James A Watson
Carolyne M Ndila
Sophie Uyoga
Alexander Macharia
Gideon Nyutu
Shebe Mohammed
Caroline Ngetsa
Neema Mturi
Norbert Peshu
Benjamin Tsofa
Kirk Rockett
Stije Leopold
Hugh Kingston
Elizabeth C George
Kathryn Maitland
Nicholas PJ Day
Arjen M Dondorp
Philip Bejon
Thomas N Williams
Chris C Holmes
Nicholas J White
Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
description Severe falciparum malaria has substantially affected human evolution. Genetic association studies of patients with clinically defined severe malaria and matched population controls have helped characterise human genetic susceptibility to severe malaria, but phenotypic imprecision compromises discovered associations. In areas of high malaria transmission, the diagnosis of severe malaria in young children and, in particular, the distinction from bacterial sepsis are imprecise. We developed a probabilistic diagnostic model of severe malaria using platelet and white count data. Under this model, we re-analysed clinical and genetic data from 2220 Kenyan children with clinically defined severe malaria and 3940 population controls, adjusting for phenotype mis-labelling. Our model, validated by the distribution of sickle trait, estimated that approximately one-third of cases did not have severe malaria. We propose a data-tilting approach for case-control studies with phenotype mis-labelling and show that this reduces false discovery rates and improves statistical power in genome-wide association studies.
format article
author James A Watson
Carolyne M Ndila
Sophie Uyoga
Alexander Macharia
Gideon Nyutu
Shebe Mohammed
Caroline Ngetsa
Neema Mturi
Norbert Peshu
Benjamin Tsofa
Kirk Rockett
Stije Leopold
Hugh Kingston
Elizabeth C George
Kathryn Maitland
Nicholas PJ Day
Arjen M Dondorp
Philip Bejon
Thomas N Williams
Chris C Holmes
Nicholas J White
author_facet James A Watson
Carolyne M Ndila
Sophie Uyoga
Alexander Macharia
Gideon Nyutu
Shebe Mohammed
Caroline Ngetsa
Neema Mturi
Norbert Peshu
Benjamin Tsofa
Kirk Rockett
Stije Leopold
Hugh Kingston
Elizabeth C George
Kathryn Maitland
Nicholas PJ Day
Arjen M Dondorp
Philip Bejon
Thomas N Williams
Chris C Holmes
Nicholas J White
author_sort James A Watson
title Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
title_short Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
title_full Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
title_fullStr Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
title_full_unstemmed Improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
title_sort improving statistical power in severe malaria genetic association studies by augmenting phenotypic precision
publisher eLife Sciences Publications Ltd
publishDate 2021
url https://doaj.org/article/9975f68439c94b6da46fbbde7cbac9a5
work_keys_str_mv AT jamesawatson improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT carolynemndila improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT sophieuyoga improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT alexandermacharia improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT gideonnyutu improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT shebemohammed improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT carolinengetsa improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT neemamturi improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT norbertpeshu improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT benjamintsofa improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT kirkrockett improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT stijeleopold improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT hughkingston improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT elizabethcgeorge improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT kathrynmaitland improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT nicholaspjday improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT arjenmdondorp improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT philipbejon improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT thomasnwilliams improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT chrischolmes improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
AT nicholasjwhite improvingstatisticalpowerinseveremalariageneticassociationstudiesbyaugmentingphenotypicprecision
_version_ 1718417568495042560