Sentinel‐Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai‐Tibet Plateau

Abstract Thermokarst lakes and ponds (hereafter referred to as thaw lakes) play an important role in the permafrost regions by regulating hydrology, ecology, and biogeochemistry. However, detailed quantitative information on thaw lake extent and distribution remains poorly resolved across the entire...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhiqiang Wei, Zhiheng Du, Lei Wang, Jiahui Lin, Yaru Feng, Qian Xu, Cunde Xiao
Formato: article
Lenguaje:EN
Publicado: American Geophysical Union (AGU) 2021
Materias:
Acceso en línea:https://doaj.org/article/997c2489fa3b44d995781b5a2e059079
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:997c2489fa3b44d995781b5a2e059079
record_format dspace
spelling oai:doaj.org-article:997c2489fa3b44d995781b5a2e0590792021-11-23T21:03:07ZSentinel‐Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai‐Tibet Plateau2333-508410.1029/2021EA001950https://doaj.org/article/997c2489fa3b44d995781b5a2e0590792021-11-01T00:00:00Zhttps://doi.org/10.1029/2021EA001950https://doaj.org/toc/2333-5084Abstract Thermokarst lakes and ponds (hereafter referred to as thaw lakes) play an important role in the permafrost regions by regulating hydrology, ecology, and biogeochemistry. However, detailed quantitative information on thaw lake extent and distribution remains poorly resolved across the entire permafrost regions on the Qinghai‐Tibet Plateau (QTP). Here, we applied the random forest (RF) model and manual visual vectorization methods to extract thaw lake boundaries on the QTP based on Sentinel‐2 images. Accuracy assessment was comprehensively demonstrated regarding the inherent spatial resolution of imagery and RF model performance. The results showed that the accumulated uncertainty of the total thaw lake area was ±5.75 km2, and the mean accuracy (91.9%) from field‐measured boundaries of 132 thaw lakes supported the accuracy of this inventory. A total of ∼161,300 thaw lakes with sizes ranging from 500 m2 to 3 km2 were detected, with a total area of ∼2,825.45 ± 5.75 km2. Most thaw lakes were detected in the continuous permafrost type (94.1%) and within the elevations of 4,500–5,000 m (68.4%). The small thaw lakes (<10,000 m2) predominated the total lake number (78.9%) but contributed to a small portion of the total lake area (12.7%). Spatial distributions of thaw lakes in terms of different climatic and environmental conditions were also comprehensively explored, including temperature, precipitation, ground thermal stability, active layer thickness, vegetation, soil properties, and underground ice content. This inventory is expected to be incorporated into Earth system models for a more comprehensive projection of the large‐scale biogeochemical feedback of thermokarst landforms on the QTP under continued global warming.Zhiqiang WeiZhiheng DuLei WangJiahui LinYaru FengQian XuCunde XiaoAmerican Geophysical Union (AGU)articleAstronomyQB1-991GeologyQE1-996.5ENEarth and Space Science, Vol 8, Iss 11, Pp n/a-n/a (2021)
institution DOAJ
collection DOAJ
language EN
topic Astronomy
QB1-991
Geology
QE1-996.5
spellingShingle Astronomy
QB1-991
Geology
QE1-996.5
Zhiqiang Wei
Zhiheng Du
Lei Wang
Jiahui Lin
Yaru Feng
Qian Xu
Cunde Xiao
Sentinel‐Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai‐Tibet Plateau
description Abstract Thermokarst lakes and ponds (hereafter referred to as thaw lakes) play an important role in the permafrost regions by regulating hydrology, ecology, and biogeochemistry. However, detailed quantitative information on thaw lake extent and distribution remains poorly resolved across the entire permafrost regions on the Qinghai‐Tibet Plateau (QTP). Here, we applied the random forest (RF) model and manual visual vectorization methods to extract thaw lake boundaries on the QTP based on Sentinel‐2 images. Accuracy assessment was comprehensively demonstrated regarding the inherent spatial resolution of imagery and RF model performance. The results showed that the accumulated uncertainty of the total thaw lake area was ±5.75 km2, and the mean accuracy (91.9%) from field‐measured boundaries of 132 thaw lakes supported the accuracy of this inventory. A total of ∼161,300 thaw lakes with sizes ranging from 500 m2 to 3 km2 were detected, with a total area of ∼2,825.45 ± 5.75 km2. Most thaw lakes were detected in the continuous permafrost type (94.1%) and within the elevations of 4,500–5,000 m (68.4%). The small thaw lakes (<10,000 m2) predominated the total lake number (78.9%) but contributed to a small portion of the total lake area (12.7%). Spatial distributions of thaw lakes in terms of different climatic and environmental conditions were also comprehensively explored, including temperature, precipitation, ground thermal stability, active layer thickness, vegetation, soil properties, and underground ice content. This inventory is expected to be incorporated into Earth system models for a more comprehensive projection of the large‐scale biogeochemical feedback of thermokarst landforms on the QTP under continued global warming.
format article
author Zhiqiang Wei
Zhiheng Du
Lei Wang
Jiahui Lin
Yaru Feng
Qian Xu
Cunde Xiao
author_facet Zhiqiang Wei
Zhiheng Du
Lei Wang
Jiahui Lin
Yaru Feng
Qian Xu
Cunde Xiao
author_sort Zhiqiang Wei
title Sentinel‐Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai‐Tibet Plateau
title_short Sentinel‐Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai‐Tibet Plateau
title_full Sentinel‐Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai‐Tibet Plateau
title_fullStr Sentinel‐Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai‐Tibet Plateau
title_full_unstemmed Sentinel‐Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghai‐Tibet Plateau
title_sort sentinel‐based inventory of thermokarst lakes and ponds across permafrost landscapes on the qinghai‐tibet plateau
publisher American Geophysical Union (AGU)
publishDate 2021
url https://doaj.org/article/997c2489fa3b44d995781b5a2e059079
work_keys_str_mv AT zhiqiangwei sentinelbasedinventoryofthermokarstlakesandpondsacrosspermafrostlandscapesontheqinghaitibetplateau
AT zhihengdu sentinelbasedinventoryofthermokarstlakesandpondsacrosspermafrostlandscapesontheqinghaitibetplateau
AT leiwang sentinelbasedinventoryofthermokarstlakesandpondsacrosspermafrostlandscapesontheqinghaitibetplateau
AT jiahuilin sentinelbasedinventoryofthermokarstlakesandpondsacrosspermafrostlandscapesontheqinghaitibetplateau
AT yarufeng sentinelbasedinventoryofthermokarstlakesandpondsacrosspermafrostlandscapesontheqinghaitibetplateau
AT qianxu sentinelbasedinventoryofthermokarstlakesandpondsacrosspermafrostlandscapesontheqinghaitibetplateau
AT cundexiao sentinelbasedinventoryofthermokarstlakesandpondsacrosspermafrostlandscapesontheqinghaitibetplateau
_version_ 1718416110452211712