Improving breast cancer survival analysis through competition-based multidimensional modeling.
Breast cancer is the most common malignancy in women and is responsible for hundreds of thousands of deaths annually. As with most cancers, it is a heterogeneous disease and different breast cancer subtypes are treated differently. Understanding the difference in prognosis for breast cancer based on...
Guardado en:
Autores principales: | Erhan Bilal, Janusz Dutkowski, Justin Guinney, In Sock Jang, Benjamin A Logsdon, Gaurav Pandey, Benjamin A Sauerwine, Yishai Shimoni, Hans Kristian Moen Vollan, Brigham H Mecham, Oscar M Rueda, Jorg Tost, Christina Curtis, Mariano J Alvarez, Vessela N Kristensen, Samuel Aparicio, Anne-Lise Børresen-Dale, Carlos Caldas, Andrea Califano, Stephen H Friend, Trey Ideker, Eric E Schadt, Gustavo A Stolovitzky, Adam A Margolin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99861dbc72c64dee91e8655ddfaa2222 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Challenges in identifying cancer genes by analysis of exome sequencing data
por: Matan Hofree, et al.
Publicado: (2016) -
Genetic dissection of complex traits using hierarchical biological knowledge.
por: Hidenori Tanaka, et al.
Publicado: (2021) -
Plato's cave algorithm: inferring functional signaling networks from early gene expression shadows.
por: Yishai Shimoni, et al.
Publicado: (2010) -
PUMA: a unified framework for penalized multiple regression analysis of GWAS data.
por: Gabriel E Hoffman, et al.
Publicado: (2013) -
Typing tumors using pathways selected by somatic evolution
por: Sheng Wang, et al.
Publicado: (2018)