Cognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magneto-encephalography.
<h4>Background</h4>Cognitive dysfunction in multiple sclerosis (MS) is frequent. Insight into underlying mechanisms would help to develop therapeutic strategies.<h4>Objective</h4>To explore the relationship of cognitive performance to patterns of nodal centrality derived from...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/999789c63f1e4013a8494d2a00e02e09 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:999789c63f1e4013a8494d2a00e02e09 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:999789c63f1e4013a8494d2a00e02e092021-11-18T07:10:36ZCognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magneto-encephalography.1932-620310.1371/journal.pone.0042087https://doaj.org/article/999789c63f1e4013a8494d2a00e02e092012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22848712/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>Cognitive dysfunction in multiple sclerosis (MS) is frequent. Insight into underlying mechanisms would help to develop therapeutic strategies.<h4>Objective</h4>To explore the relationship of cognitive performance to patterns of nodal centrality derived from magneto-encephalography (MEG).<h4>Methods</h4>34 early relapsing-remitting MS patients (median EDSS 2.0) and 28 age- and gender-matched healthy controls (HC) had a MEG, a neuropsychological assessment and structural MRI. Resting-state functional connectivity was determined by the synchronization likelihood. Eigenvector Centrality (EC) was used to quantify for each sensor its connectivity and importance within the network. A cognition-score was calculated, and normalized grey and white matter volumes were determined. EC was compared per sensor and frequency band between groups using permutation testing, and related to cognition.<h4>Results</h4>Patients had lower grey and white matter volumes than HC, male patients lower cognitive performance than female patients. In HC, EC distribution showed highest nodal centrality over bi-parietal sensors ("hubs"). In patients, nodal centrality was even higher bi-parietally (theta-band) but markedly lower left temporally (upper alpha- and beta-band). Lower cognitive performance correlated to decreased nodal centrality over left temporal (lower alpha-band) and right temporal (beta-band) sensors, and to increased nodal centrality over right parieto-temporal sensors (beta-band). Network changes were most pronounced in male patients.<h4>Conclusions</h4>Partial functional disconnection of the temporal regions was associated with cognitive dysfunction in MS; increased centrality in parietal hubs may reflect a shift from temporal to possibly less efficient parietal processing. To better understand patterns and dynamics of these network changes, longitudinal studies are warranted, also addressing the influence of gender.Martin HardmeierMenno M SchoonheimJeroen J G GeurtsArjan HillebrandChris H PolmanFrederik BarkhofCornelis J StamPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 7, p e42087 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Martin Hardmeier Menno M Schoonheim Jeroen J G Geurts Arjan Hillebrand Chris H Polman Frederik Barkhof Cornelis J Stam Cognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magneto-encephalography. |
description |
<h4>Background</h4>Cognitive dysfunction in multiple sclerosis (MS) is frequent. Insight into underlying mechanisms would help to develop therapeutic strategies.<h4>Objective</h4>To explore the relationship of cognitive performance to patterns of nodal centrality derived from magneto-encephalography (MEG).<h4>Methods</h4>34 early relapsing-remitting MS patients (median EDSS 2.0) and 28 age- and gender-matched healthy controls (HC) had a MEG, a neuropsychological assessment and structural MRI. Resting-state functional connectivity was determined by the synchronization likelihood. Eigenvector Centrality (EC) was used to quantify for each sensor its connectivity and importance within the network. A cognition-score was calculated, and normalized grey and white matter volumes were determined. EC was compared per sensor and frequency band between groups using permutation testing, and related to cognition.<h4>Results</h4>Patients had lower grey and white matter volumes than HC, male patients lower cognitive performance than female patients. In HC, EC distribution showed highest nodal centrality over bi-parietal sensors ("hubs"). In patients, nodal centrality was even higher bi-parietally (theta-band) but markedly lower left temporally (upper alpha- and beta-band). Lower cognitive performance correlated to decreased nodal centrality over left temporal (lower alpha-band) and right temporal (beta-band) sensors, and to increased nodal centrality over right parieto-temporal sensors (beta-band). Network changes were most pronounced in male patients.<h4>Conclusions</h4>Partial functional disconnection of the temporal regions was associated with cognitive dysfunction in MS; increased centrality in parietal hubs may reflect a shift from temporal to possibly less efficient parietal processing. To better understand patterns and dynamics of these network changes, longitudinal studies are warranted, also addressing the influence of gender. |
format |
article |
author |
Martin Hardmeier Menno M Schoonheim Jeroen J G Geurts Arjan Hillebrand Chris H Polman Frederik Barkhof Cornelis J Stam |
author_facet |
Martin Hardmeier Menno M Schoonheim Jeroen J G Geurts Arjan Hillebrand Chris H Polman Frederik Barkhof Cornelis J Stam |
author_sort |
Martin Hardmeier |
title |
Cognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magneto-encephalography. |
title_short |
Cognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magneto-encephalography. |
title_full |
Cognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magneto-encephalography. |
title_fullStr |
Cognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magneto-encephalography. |
title_full_unstemmed |
Cognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magneto-encephalography. |
title_sort |
cognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magneto-encephalography. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/999789c63f1e4013a8494d2a00e02e09 |
work_keys_str_mv |
AT martinhardmeier cognitivedysfunctioninearlymultiplesclerosisalteredcentralityderivedfromrestingstatefunctionalconnectivityusingmagnetoencephalography AT mennomschoonheim cognitivedysfunctioninearlymultiplesclerosisalteredcentralityderivedfromrestingstatefunctionalconnectivityusingmagnetoencephalography AT jeroenjggeurts cognitivedysfunctioninearlymultiplesclerosisalteredcentralityderivedfromrestingstatefunctionalconnectivityusingmagnetoencephalography AT arjanhillebrand cognitivedysfunctioninearlymultiplesclerosisalteredcentralityderivedfromrestingstatefunctionalconnectivityusingmagnetoencephalography AT chrishpolman cognitivedysfunctioninearlymultiplesclerosisalteredcentralityderivedfromrestingstatefunctionalconnectivityusingmagnetoencephalography AT frederikbarkhof cognitivedysfunctioninearlymultiplesclerosisalteredcentralityderivedfromrestingstatefunctionalconnectivityusingmagnetoencephalography AT cornelisjstam cognitivedysfunctioninearlymultiplesclerosisalteredcentralityderivedfromrestingstatefunctionalconnectivityusingmagnetoencephalography |
_version_ |
1718423868982427648 |