Identity crisis in alchemical space drives the entropic colloidal glass transition
Fluids may avoid crystallization via an underlying mechanism that remains hotly debated. Teich et al. show that hard polyhedral particles form glass because of the competition of local structural motifs, each of which is prevalent in crystals self-assembled from particles of closely related shapes.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99a2b3211add483396c4f11e249de819 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Fluids may avoid crystallization via an underlying mechanism that remains hotly debated. Teich et al. show that hard polyhedral particles form glass because of the competition of local structural motifs, each of which is prevalent in crystals self-assembled from particles of closely related shapes. |
---|