Epigenetic silencing directs expression heterogeneity of stably integrated multi-transcript unit genetic circuits

Abstract We report that epigenetic silencing causes the loss of function of multi-transcript unit constructs that are integrated using CRISPR-Cas9. Using a modular two color reporter system flanked by selection markers, we demonstrate that expression heterogeneity does not correlate with sequence al...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jan Zimak, Zachary W. Wagoner, Nellie Nelson, Brooke Waechtler, Hana Schlosser, Morgan Kopecky, Jie Wu, Weian Zhao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/99a5ea87ae6540f48bce4ae7dceb0557
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:99a5ea87ae6540f48bce4ae7dceb0557
record_format dspace
spelling oai:doaj.org-article:99a5ea87ae6540f48bce4ae7dceb05572021-12-02T13:57:37ZEpigenetic silencing directs expression heterogeneity of stably integrated multi-transcript unit genetic circuits10.1038/s41598-021-81975-12045-2322https://doaj.org/article/99a5ea87ae6540f48bce4ae7dceb05572021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-81975-1https://doaj.org/toc/2045-2322Abstract We report that epigenetic silencing causes the loss of function of multi-transcript unit constructs that are integrated using CRISPR-Cas9. Using a modular two color reporter system flanked by selection markers, we demonstrate that expression heterogeneity does not correlate with sequence alteration but instead correlates with chromosomal accessibility. We partially reverse this epigenetic silencing via small-molecule inhibitors of methylation and histone deacetylation. We then correlate each heterogeneously-expressing phenotype with its expected epigenetic state by employing ATAC-seq. The stability of each expression phenotype is reinforced by selective pressure, which indicates that ongoing epigenetic remodeling can occur for over one month after integration. Collectively, our data suggests that epigenetic silencing limits the utility of multi-transcript unit constructs that are integrated via double-strand repair pathways. Our research implies that mammalian synthetic biologists should consider localized epigenetic outcomes when designing complex genetic circuits.Jan ZimakZachary W. WagonerNellie NelsonBrooke WaechtlerHana SchlosserMorgan KopeckyJie WuWeian ZhaoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jan Zimak
Zachary W. Wagoner
Nellie Nelson
Brooke Waechtler
Hana Schlosser
Morgan Kopecky
Jie Wu
Weian Zhao
Epigenetic silencing directs expression heterogeneity of stably integrated multi-transcript unit genetic circuits
description Abstract We report that epigenetic silencing causes the loss of function of multi-transcript unit constructs that are integrated using CRISPR-Cas9. Using a modular two color reporter system flanked by selection markers, we demonstrate that expression heterogeneity does not correlate with sequence alteration but instead correlates with chromosomal accessibility. We partially reverse this epigenetic silencing via small-molecule inhibitors of methylation and histone deacetylation. We then correlate each heterogeneously-expressing phenotype with its expected epigenetic state by employing ATAC-seq. The stability of each expression phenotype is reinforced by selective pressure, which indicates that ongoing epigenetic remodeling can occur for over one month after integration. Collectively, our data suggests that epigenetic silencing limits the utility of multi-transcript unit constructs that are integrated via double-strand repair pathways. Our research implies that mammalian synthetic biologists should consider localized epigenetic outcomes when designing complex genetic circuits.
format article
author Jan Zimak
Zachary W. Wagoner
Nellie Nelson
Brooke Waechtler
Hana Schlosser
Morgan Kopecky
Jie Wu
Weian Zhao
author_facet Jan Zimak
Zachary W. Wagoner
Nellie Nelson
Brooke Waechtler
Hana Schlosser
Morgan Kopecky
Jie Wu
Weian Zhao
author_sort Jan Zimak
title Epigenetic silencing directs expression heterogeneity of stably integrated multi-transcript unit genetic circuits
title_short Epigenetic silencing directs expression heterogeneity of stably integrated multi-transcript unit genetic circuits
title_full Epigenetic silencing directs expression heterogeneity of stably integrated multi-transcript unit genetic circuits
title_fullStr Epigenetic silencing directs expression heterogeneity of stably integrated multi-transcript unit genetic circuits
title_full_unstemmed Epigenetic silencing directs expression heterogeneity of stably integrated multi-transcript unit genetic circuits
title_sort epigenetic silencing directs expression heterogeneity of stably integrated multi-transcript unit genetic circuits
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/99a5ea87ae6540f48bce4ae7dceb0557
work_keys_str_mv AT janzimak epigeneticsilencingdirectsexpressionheterogeneityofstablyintegratedmultitranscriptunitgeneticcircuits
AT zacharywwagoner epigeneticsilencingdirectsexpressionheterogeneityofstablyintegratedmultitranscriptunitgeneticcircuits
AT nellienelson epigeneticsilencingdirectsexpressionheterogeneityofstablyintegratedmultitranscriptunitgeneticcircuits
AT brookewaechtler epigeneticsilencingdirectsexpressionheterogeneityofstablyintegratedmultitranscriptunitgeneticcircuits
AT hanaschlosser epigeneticsilencingdirectsexpressionheterogeneityofstablyintegratedmultitranscriptunitgeneticcircuits
AT morgankopecky epigeneticsilencingdirectsexpressionheterogeneityofstablyintegratedmultitranscriptunitgeneticcircuits
AT jiewu epigeneticsilencingdirectsexpressionheterogeneityofstablyintegratedmultitranscriptunitgeneticcircuits
AT weianzhao epigeneticsilencingdirectsexpressionheterogeneityofstablyintegratedmultitranscriptunitgeneticcircuits
_version_ 1718392275192512512