Systematic auditing is essential to debiasing machine learning in biology

Fatma-Elzahraa Eid et al. illustrate a principled approach for identifying biases that can inflate the performance of biological machine learning models. When applied to three biomedical prediction problems, they identify previously unrecognized biases and ultimately show that models are likely to l...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fatma-Elzahraa Eid, Haitham A. Elmarakeby, Yujia Alina Chan, Nadine Fornelos, Mahmoud ElHefnawi, Eliezer M. Van Allen, Lenwood S. Heath, Kasper Lage
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/99b8c372383a4995a2577d5c731b5219
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:99b8c372383a4995a2577d5c731b5219
record_format dspace
spelling oai:doaj.org-article:99b8c372383a4995a2577d5c731b52192021-12-02T13:30:21ZSystematic auditing is essential to debiasing machine learning in biology10.1038/s42003-021-01674-52399-3642https://doaj.org/article/99b8c372383a4995a2577d5c731b52192021-02-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-01674-5https://doaj.org/toc/2399-3642Fatma-Elzahraa Eid et al. illustrate a principled approach for identifying biases that can inflate the performance of biological machine learning models. When applied to three biomedical prediction problems, they identify previously unrecognized biases and ultimately show that models are likely to learn primarily from data biases when there is insufficient learnable signal in the data.Fatma-Elzahraa EidHaitham A. ElmarakebyYujia Alina ChanNadine FornelosMahmoud ElHefnawiEliezer M. Van AllenLenwood S. HeathKasper LageNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Fatma-Elzahraa Eid
Haitham A. Elmarakeby
Yujia Alina Chan
Nadine Fornelos
Mahmoud ElHefnawi
Eliezer M. Van Allen
Lenwood S. Heath
Kasper Lage
Systematic auditing is essential to debiasing machine learning in biology
description Fatma-Elzahraa Eid et al. illustrate a principled approach for identifying biases that can inflate the performance of biological machine learning models. When applied to three biomedical prediction problems, they identify previously unrecognized biases and ultimately show that models are likely to learn primarily from data biases when there is insufficient learnable signal in the data.
format article
author Fatma-Elzahraa Eid
Haitham A. Elmarakeby
Yujia Alina Chan
Nadine Fornelos
Mahmoud ElHefnawi
Eliezer M. Van Allen
Lenwood S. Heath
Kasper Lage
author_facet Fatma-Elzahraa Eid
Haitham A. Elmarakeby
Yujia Alina Chan
Nadine Fornelos
Mahmoud ElHefnawi
Eliezer M. Van Allen
Lenwood S. Heath
Kasper Lage
author_sort Fatma-Elzahraa Eid
title Systematic auditing is essential to debiasing machine learning in biology
title_short Systematic auditing is essential to debiasing machine learning in biology
title_full Systematic auditing is essential to debiasing machine learning in biology
title_fullStr Systematic auditing is essential to debiasing machine learning in biology
title_full_unstemmed Systematic auditing is essential to debiasing machine learning in biology
title_sort systematic auditing is essential to debiasing machine learning in biology
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/99b8c372383a4995a2577d5c731b5219
work_keys_str_mv AT fatmaelzahraaeid systematicauditingisessentialtodebiasingmachinelearninginbiology
AT haithamaelmarakeby systematicauditingisessentialtodebiasingmachinelearninginbiology
AT yujiaalinachan systematicauditingisessentialtodebiasingmachinelearninginbiology
AT nadinefornelos systematicauditingisessentialtodebiasingmachinelearninginbiology
AT mahmoudelhefnawi systematicauditingisessentialtodebiasingmachinelearninginbiology
AT eliezermvanallen systematicauditingisessentialtodebiasingmachinelearninginbiology
AT lenwoodsheath systematicauditingisessentialtodebiasingmachinelearninginbiology
AT kasperlage systematicauditingisessentialtodebiasingmachinelearninginbiology
_version_ 1718392929455702016