Systematic auditing is essential to debiasing machine learning in biology
Fatma-Elzahraa Eid et al. illustrate a principled approach for identifying biases that can inflate the performance of biological machine learning models. When applied to three biomedical prediction problems, they identify previously unrecognized biases and ultimately show that models are likely to l...
Guardado en:
Autores principales: | Fatma-Elzahraa Eid, Haitham A. Elmarakeby, Yujia Alina Chan, Nadine Fornelos, Mahmoud ElHefnawi, Eliezer M. Van Allen, Lenwood S. Heath, Kasper Lage |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99b8c372383a4995a2577d5c731b5219 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Co-regulatory Network of Oncosuppressor miRNAs and Transcription Factors for Pathology of Human Hepatic Cancer Stem Cells (HCSC)
por: Rania Hassan Mohamed, et al.
Publicado: (2019) -
Audit Committee Characteristics and Audit Reporting Readability
por: Razieh Alikhani, et al.
Publicado: (2021) -
IMPROVE AUDIT REPORTING BY ANALYZING THE LIQUIDITY OF THE AUDITED ENTITY
por: S. Ponomareva
Publicado: (2018) -
Industry expertise on audit committee and audit report timeliness
por: Nahla Abdulrahman Mohammed Raweh, et al.
Publicado: (2021) -
Assessing the Relation among Audit Detection Risk, Audit Market Competition Environment and Audit Services Fee
por: Mohammad Hassani
Publicado: (2021)