Using electronic patient records to discover disease correlations and stratify patient cohorts.

Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Francisco S Roque, Peter B Jensen, Henriette Schmock, Marlene Dalgaard, Massimo Andreatta, Thomas Hansen, Karen Søeby, Søren Bredkjær, Anders Juul, Thomas Werge, Lars J Jensen, Søren Brunak
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2011
Materias:
Acceso en línea:https://doaj.org/article/99ba46806dcc46edb876c08be452b359
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:99ba46806dcc46edb876c08be452b359
record_format dspace
spelling oai:doaj.org-article:99ba46806dcc46edb876c08be452b3592021-11-18T05:50:20ZUsing electronic patient records to discover disease correlations and stratify patient cohorts.1553-734X1553-735810.1371/journal.pcbi.1002141https://doaj.org/article/99ba46806dcc46edb876c08be452b3592011-08-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21901084/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting phenotype information from the free-text in such records we demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to systems biology frameworks.Francisco S RoquePeter B JensenHenriette SchmockMarlene DalgaardMassimo AndreattaThomas HansenKaren SøebySøren BredkjærAnders JuulThomas WergeLars J JensenSøren BrunakPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 7, Iss 8, p e1002141 (2011)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Francisco S Roque
Peter B Jensen
Henriette Schmock
Marlene Dalgaard
Massimo Andreatta
Thomas Hansen
Karen Søeby
Søren Bredkjær
Anders Juul
Thomas Werge
Lars J Jensen
Søren Brunak
Using electronic patient records to discover disease correlations and stratify patient cohorts.
description Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting phenotype information from the free-text in such records we demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to systems biology frameworks.
format article
author Francisco S Roque
Peter B Jensen
Henriette Schmock
Marlene Dalgaard
Massimo Andreatta
Thomas Hansen
Karen Søeby
Søren Bredkjær
Anders Juul
Thomas Werge
Lars J Jensen
Søren Brunak
author_facet Francisco S Roque
Peter B Jensen
Henriette Schmock
Marlene Dalgaard
Massimo Andreatta
Thomas Hansen
Karen Søeby
Søren Bredkjær
Anders Juul
Thomas Werge
Lars J Jensen
Søren Brunak
author_sort Francisco S Roque
title Using electronic patient records to discover disease correlations and stratify patient cohorts.
title_short Using electronic patient records to discover disease correlations and stratify patient cohorts.
title_full Using electronic patient records to discover disease correlations and stratify patient cohorts.
title_fullStr Using electronic patient records to discover disease correlations and stratify patient cohorts.
title_full_unstemmed Using electronic patient records to discover disease correlations and stratify patient cohorts.
title_sort using electronic patient records to discover disease correlations and stratify patient cohorts.
publisher Public Library of Science (PLoS)
publishDate 2011
url https://doaj.org/article/99ba46806dcc46edb876c08be452b359
work_keys_str_mv AT franciscosroque usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT peterbjensen usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT henrietteschmock usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT marlenedalgaard usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT massimoandreatta usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT thomashansen usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT karensøeby usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT sørenbredkjær usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT andersjuul usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT thomaswerge usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT larsjjensen usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
AT sørenbrunak usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts
_version_ 1718424801822900224