Using electronic patient records to discover disease correlations and stratify patient cohorts.
Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99ba46806dcc46edb876c08be452b359 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:99ba46806dcc46edb876c08be452b359 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:99ba46806dcc46edb876c08be452b3592021-11-18T05:50:20ZUsing electronic patient records to discover disease correlations and stratify patient cohorts.1553-734X1553-735810.1371/journal.pcbi.1002141https://doaj.org/article/99ba46806dcc46edb876c08be452b3592011-08-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21901084/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting phenotype information from the free-text in such records we demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to systems biology frameworks.Francisco S RoquePeter B JensenHenriette SchmockMarlene DalgaardMassimo AndreattaThomas HansenKaren SøebySøren BredkjærAnders JuulThomas WergeLars J JensenSøren BrunakPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 7, Iss 8, p e1002141 (2011) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Francisco S Roque Peter B Jensen Henriette Schmock Marlene Dalgaard Massimo Andreatta Thomas Hansen Karen Søeby Søren Bredkjær Anders Juul Thomas Werge Lars J Jensen Søren Brunak Using electronic patient records to discover disease correlations and stratify patient cohorts. |
description |
Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting phenotype information from the free-text in such records we demonstrate that we can extend the information contained in the structured record data, and use it for producing fine-grained patient stratification and disease co-occurrence statistics. The approach uses a dictionary based on the International Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently can be mapped to systems biology frameworks. |
format |
article |
author |
Francisco S Roque Peter B Jensen Henriette Schmock Marlene Dalgaard Massimo Andreatta Thomas Hansen Karen Søeby Søren Bredkjær Anders Juul Thomas Werge Lars J Jensen Søren Brunak |
author_facet |
Francisco S Roque Peter B Jensen Henriette Schmock Marlene Dalgaard Massimo Andreatta Thomas Hansen Karen Søeby Søren Bredkjær Anders Juul Thomas Werge Lars J Jensen Søren Brunak |
author_sort |
Francisco S Roque |
title |
Using electronic patient records to discover disease correlations and stratify patient cohorts. |
title_short |
Using electronic patient records to discover disease correlations and stratify patient cohorts. |
title_full |
Using electronic patient records to discover disease correlations and stratify patient cohorts. |
title_fullStr |
Using electronic patient records to discover disease correlations and stratify patient cohorts. |
title_full_unstemmed |
Using electronic patient records to discover disease correlations and stratify patient cohorts. |
title_sort |
using electronic patient records to discover disease correlations and stratify patient cohorts. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2011 |
url |
https://doaj.org/article/99ba46806dcc46edb876c08be452b359 |
work_keys_str_mv |
AT franciscosroque usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts AT peterbjensen usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts AT henrietteschmock usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts AT marlenedalgaard usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts AT massimoandreatta usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts AT thomashansen usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts AT karensøeby usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts AT sørenbredkjær usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts AT andersjuul usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts AT thomaswerge usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts AT larsjjensen usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts AT sørenbrunak usingelectronicpatientrecordstodiscoverdiseasecorrelationsandstratifypatientcohorts |
_version_ |
1718424801822900224 |