Using electronic patient records to discover disease correlations and stratify patient cohorts.
Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracting...
Guardado en:
Autores principales: | Francisco S Roque, Peter B Jensen, Henriette Schmock, Marlene Dalgaard, Massimo Andreatta, Thomas Hansen, Karen Søeby, Søren Bredkjær, Anders Juul, Thomas Werge, Lars J Jensen, Søren Brunak |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99ba46806dcc46edb876c08be452b359 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Time-ordered comorbidity correlations identify patients at risk of mis- and overdiagnosis
por: Isabella Friis Jørgensen, et al.
Publicado: (2021) -
Cardiorespiratory fitness assessment using risk-stratified exercise testing and dose–response relationships with disease outcomes
por: Tomas I. Gonzales, et al.
Publicado: (2021) -
Disease trajectory browser for exploring temporal, population-wide disease progression patterns in 7.2 million Danish patients
por: Troels Siggaard, et al.
Publicado: (2020) -
An age stratified analysis of the biomarkers in patients with colorectal cancer
por: Hui Yao, et al.
Publicado: (2021) -
The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions
por: Nicholas Jochumsen, et al.
Publicado: (2016)