Asymptotics and Hille-Type Results for Dynamic Equations of Third Order with Deviating Arguments
The aim of this paper is to deduce the asymptotic and Hille-type criteria of the dynamic equations of third order on time scales. Some of the presented results concern the sufficient condition for the oscillation of all solutions of third-order dynamical equations. Additionally, compared with the re...
Guardado en:
Autores principales: | Taher S. Hassan, A. Othman Almatroud, Mohammed M. Al-Sawalha, Ismoil Odinaev |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99e3c76d775a4fefb38ad5e327eebe41 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Asymptotics for Klein-Gordon equation
por: Marin,Ana M, et al.
Publicado: (2013) -
Oscillation criteria of third-order neutral differential equations with damping and distributed deviating arguments
por: Yakun Wang, et al.
Publicado: (2021) -
Asymptotic behavior of linear advanced dynamic equations on time scales
por: Belaid,Malik, et al.
Publicado: (2019) -
ASYMPTOTIC EQUILIBRIUM FOR CERTAIN TYPE OF DIFFERENTIAL EQUATIONS WITH MAXIMUM
por: GONZÁLEZ,PATRICIO, et al.
Publicado: (2002) -
S-asymptotically ω-periodic solution for a nonlinear differential equation with piecewise constant argument in a Banach space
por: Dimbour,William, et al.
Publicado: (2014)