Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array

Partially coherent optical vortices have been applicated widely to reduce the influence of atmospheric turbulence, especially for free-space optical (FSO) communication. Furthermore, the beam array is an effective way to increase the power of the light source, and can increase the propagation distan...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jiao Wang, Mingjun Wang, Sichen Lei, Zhenkun Tan, Chenbai Wang, Yuanfei Wang
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/99e4983a248749208998450ffc81f5ce
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:99e4983a248749208998450ffc81f5ce
record_format dspace
spelling oai:doaj.org-article:99e4983a248749208998450ffc81f5ce2021-11-25T18:43:39ZInfluence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array10.3390/photonics81105122304-6732https://doaj.org/article/99e4983a248749208998450ffc81f5ce2021-11-01T00:00:00Zhttps://www.mdpi.com/2304-6732/8/11/512https://doaj.org/toc/2304-6732Partially coherent optical vortices have been applicated widely to reduce the influence of atmospheric turbulence, especially for free-space optical (FSO) communication. Furthermore, the beam array is an effective way to increase the power of the light source, and can increase the propagation distance of the FSO communication system. Herein, we innovatively report evolution properties of the radial phased-locked partially coherent vortex (RPLPCV) beam array in non-Kolmogorov turbulence. The analytical expressions for the cross-spectral density and the average intensity of an RPLPCV beam array propagated through non-Kolmogorov turbulence are obtained. The numerical results reveal that the intensity distribution of the RPLPCV array propagated in the non-Kolmogorov turbulence is gradually converted to a standard Gaussian distribution. In addition, the larger the radial radius, radial number and waist radius are, the smaller the coherence length is. Moreover, the longer the wavelength is, the shorter the propagation distance required for the intensity distribution of the RPLPCV beam array to be converted into a Gaussian distribution in the non-Kolmogorov turbulence. The research in this paper provides a theoretical reference for the selection of light sources and the suppression of turbulence effects in wireless optical communication.Jiao WangMingjun WangSichen LeiZhenkun TanChenbai WangYuanfei WangMDPI AGarticleintensity distributionpartially coherent optical vorticesbeam arraynon-Kolmogorov turbulenceApplied optics. PhotonicsTA1501-1820ENPhotonics, Vol 8, Iss 512, p 512 (2021)
institution DOAJ
collection DOAJ
language EN
topic intensity distribution
partially coherent optical vortices
beam array
non-Kolmogorov turbulence
Applied optics. Photonics
TA1501-1820
spellingShingle intensity distribution
partially coherent optical vortices
beam array
non-Kolmogorov turbulence
Applied optics. Photonics
TA1501-1820
Jiao Wang
Mingjun Wang
Sichen Lei
Zhenkun Tan
Chenbai Wang
Yuanfei Wang
Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array
description Partially coherent optical vortices have been applicated widely to reduce the influence of atmospheric turbulence, especially for free-space optical (FSO) communication. Furthermore, the beam array is an effective way to increase the power of the light source, and can increase the propagation distance of the FSO communication system. Herein, we innovatively report evolution properties of the radial phased-locked partially coherent vortex (RPLPCV) beam array in non-Kolmogorov turbulence. The analytical expressions for the cross-spectral density and the average intensity of an RPLPCV beam array propagated through non-Kolmogorov turbulence are obtained. The numerical results reveal that the intensity distribution of the RPLPCV array propagated in the non-Kolmogorov turbulence is gradually converted to a standard Gaussian distribution. In addition, the larger the radial radius, radial number and waist radius are, the smaller the coherence length is. Moreover, the longer the wavelength is, the shorter the propagation distance required for the intensity distribution of the RPLPCV beam array to be converted into a Gaussian distribution in the non-Kolmogorov turbulence. The research in this paper provides a theoretical reference for the selection of light sources and the suppression of turbulence effects in wireless optical communication.
format article
author Jiao Wang
Mingjun Wang
Sichen Lei
Zhenkun Tan
Chenbai Wang
Yuanfei Wang
author_facet Jiao Wang
Mingjun Wang
Sichen Lei
Zhenkun Tan
Chenbai Wang
Yuanfei Wang
author_sort Jiao Wang
title Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array
title_short Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array
title_full Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array
title_fullStr Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array
title_full_unstemmed Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array
title_sort influence of source parameters and non-kolmogorov turbulence on evolution properties of radial phased-locked partially coherent vortex beam array
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/99e4983a248749208998450ffc81f5ce
work_keys_str_mv AT jiaowang influenceofsourceparametersandnonkolmogorovturbulenceonevolutionpropertiesofradialphasedlockedpartiallycoherentvortexbeamarray
AT mingjunwang influenceofsourceparametersandnonkolmogorovturbulenceonevolutionpropertiesofradialphasedlockedpartiallycoherentvortexbeamarray
AT sichenlei influenceofsourceparametersandnonkolmogorovturbulenceonevolutionpropertiesofradialphasedlockedpartiallycoherentvortexbeamarray
AT zhenkuntan influenceofsourceparametersandnonkolmogorovturbulenceonevolutionpropertiesofradialphasedlockedpartiallycoherentvortexbeamarray
AT chenbaiwang influenceofsourceparametersandnonkolmogorovturbulenceonevolutionpropertiesofradialphasedlockedpartiallycoherentvortexbeamarray
AT yuanfeiwang influenceofsourceparametersandnonkolmogorovturbulenceonevolutionpropertiesofradialphasedlockedpartiallycoherentvortexbeamarray
_version_ 1718410789397725184