Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array
Partially coherent optical vortices have been applicated widely to reduce the influence of atmospheric turbulence, especially for free-space optical (FSO) communication. Furthermore, the beam array is an effective way to increase the power of the light source, and can increase the propagation distan...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99e4983a248749208998450ffc81f5ce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:99e4983a248749208998450ffc81f5ce |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:99e4983a248749208998450ffc81f5ce2021-11-25T18:43:39ZInfluence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array10.3390/photonics81105122304-6732https://doaj.org/article/99e4983a248749208998450ffc81f5ce2021-11-01T00:00:00Zhttps://www.mdpi.com/2304-6732/8/11/512https://doaj.org/toc/2304-6732Partially coherent optical vortices have been applicated widely to reduce the influence of atmospheric turbulence, especially for free-space optical (FSO) communication. Furthermore, the beam array is an effective way to increase the power of the light source, and can increase the propagation distance of the FSO communication system. Herein, we innovatively report evolution properties of the radial phased-locked partially coherent vortex (RPLPCV) beam array in non-Kolmogorov turbulence. The analytical expressions for the cross-spectral density and the average intensity of an RPLPCV beam array propagated through non-Kolmogorov turbulence are obtained. The numerical results reveal that the intensity distribution of the RPLPCV array propagated in the non-Kolmogorov turbulence is gradually converted to a standard Gaussian distribution. In addition, the larger the radial radius, radial number and waist radius are, the smaller the coherence length is. Moreover, the longer the wavelength is, the shorter the propagation distance required for the intensity distribution of the RPLPCV beam array to be converted into a Gaussian distribution in the non-Kolmogorov turbulence. The research in this paper provides a theoretical reference for the selection of light sources and the suppression of turbulence effects in wireless optical communication.Jiao WangMingjun WangSichen LeiZhenkun TanChenbai WangYuanfei WangMDPI AGarticleintensity distributionpartially coherent optical vorticesbeam arraynon-Kolmogorov turbulenceApplied optics. PhotonicsTA1501-1820ENPhotonics, Vol 8, Iss 512, p 512 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
intensity distribution partially coherent optical vortices beam array non-Kolmogorov turbulence Applied optics. Photonics TA1501-1820 |
spellingShingle |
intensity distribution partially coherent optical vortices beam array non-Kolmogorov turbulence Applied optics. Photonics TA1501-1820 Jiao Wang Mingjun Wang Sichen Lei Zhenkun Tan Chenbai Wang Yuanfei Wang Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array |
description |
Partially coherent optical vortices have been applicated widely to reduce the influence of atmospheric turbulence, especially for free-space optical (FSO) communication. Furthermore, the beam array is an effective way to increase the power of the light source, and can increase the propagation distance of the FSO communication system. Herein, we innovatively report evolution properties of the radial phased-locked partially coherent vortex (RPLPCV) beam array in non-Kolmogorov turbulence. The analytical expressions for the cross-spectral density and the average intensity of an RPLPCV beam array propagated through non-Kolmogorov turbulence are obtained. The numerical results reveal that the intensity distribution of the RPLPCV array propagated in the non-Kolmogorov turbulence is gradually converted to a standard Gaussian distribution. In addition, the larger the radial radius, radial number and waist radius are, the smaller the coherence length is. Moreover, the longer the wavelength is, the shorter the propagation distance required for the intensity distribution of the RPLPCV beam array to be converted into a Gaussian distribution in the non-Kolmogorov turbulence. The research in this paper provides a theoretical reference for the selection of light sources and the suppression of turbulence effects in wireless optical communication. |
format |
article |
author |
Jiao Wang Mingjun Wang Sichen Lei Zhenkun Tan Chenbai Wang Yuanfei Wang |
author_facet |
Jiao Wang Mingjun Wang Sichen Lei Zhenkun Tan Chenbai Wang Yuanfei Wang |
author_sort |
Jiao Wang |
title |
Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array |
title_short |
Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array |
title_full |
Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array |
title_fullStr |
Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array |
title_full_unstemmed |
Influence of Source Parameters and Non-Kolmogorov Turbulence on Evolution Properties of Radial Phased-Locked Partially Coherent Vortex Beam Array |
title_sort |
influence of source parameters and non-kolmogorov turbulence on evolution properties of radial phased-locked partially coherent vortex beam array |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/99e4983a248749208998450ffc81f5ce |
work_keys_str_mv |
AT jiaowang influenceofsourceparametersandnonkolmogorovturbulenceonevolutionpropertiesofradialphasedlockedpartiallycoherentvortexbeamarray AT mingjunwang influenceofsourceparametersandnonkolmogorovturbulenceonevolutionpropertiesofradialphasedlockedpartiallycoherentvortexbeamarray AT sichenlei influenceofsourceparametersandnonkolmogorovturbulenceonevolutionpropertiesofradialphasedlockedpartiallycoherentvortexbeamarray AT zhenkuntan influenceofsourceparametersandnonkolmogorovturbulenceonevolutionpropertiesofradialphasedlockedpartiallycoherentvortexbeamarray AT chenbaiwang influenceofsourceparametersandnonkolmogorovturbulenceonevolutionpropertiesofradialphasedlockedpartiallycoherentvortexbeamarray AT yuanfeiwang influenceofsourceparametersandnonkolmogorovturbulenceonevolutionpropertiesofradialphasedlockedpartiallycoherentvortexbeamarray |
_version_ |
1718410789397725184 |