Model-free inference of direct network interactions from nonlinear collective dynamics
Network dynamical systems can represent the interactions involved in the collective dynamics of gene regulatory networks or metabolic circuits. Here Casadiego et al. present a method for inferring these types of interactions directly from observed time series without relying on their model.
Guardado en:
Autores principales: | Jose Casadiego, Mor Nitzan, Sarah Hallerberg, Marc Timme |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99e6c50aea8e44d19a379dca193eff07 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Combining experiments and in silico modeling to infer the role of adhesion and proliferation on the collective dynamics of cells
por: Hygor P. M. Melo, et al.
Publicado: (2021) -
Inferring collective dynamical states from widely unobserved systems
por: Jens Wilting, et al.
Publicado: (2018) -
Child-directed speech is optimized for syntax-free semantic inference
por: Guanghao You, et al.
Publicado: (2021) -
Dynamic information routing in complex networks
por: Christoph Kirst, et al.
Publicado: (2016) -
Inferring a nonlinear biochemical network model from a heterogeneous single-cell time course data
por: Yuki Shindo, et al.
Publicado: (2018)