Pancancer modelling predicts the context-specific impact of somatic mutations on transcriptional programs
Cancer genomic data sets contain a wealth of data that can be used to predict prognosis and further understand disease. Here, the authors integrate multiple genomics data types to identify transcriptional dysregulation in response to somatic mutations.
Guardado en:
Autores principales: | Hatice U. Osmanbeyoglu, Eneda Toska, Carmen Chan, José Baselga, Christina S. Leslie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99e7d5a79ab04befb459858c19d44824 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Pancancer survival analysis of cancer hallmark genes
por: Ádám Nagy, et al.
Publicado: (2021) -
MXD3 as an Immunological and Prognostic Factor From Pancancer Analysis
por: Xiaoyu Zhang, et al.
Publicado: (2021) -
The Oncogenic Role and Immune Infiltration for CARM1 Identified by Pancancer Analysis
por: Kui Liu, et al.
Publicado: (2021) -
Chromatin-informed inference of transcriptional programs in gynecologic and basal breast cancers
por: Hatice U. Osmanbeyoglu, et al.
Publicado: (2019) -
Ets transcription factor GABP controls T cell homeostasis and immunity
por: Chong T. Luo, et al.
Publicado: (2017)