Pancancer modelling predicts the context-specific impact of somatic mutations on transcriptional programs
Cancer genomic data sets contain a wealth of data that can be used to predict prognosis and further understand disease. Here, the authors integrate multiple genomics data types to identify transcriptional dysregulation in response to somatic mutations.
Enregistré dans:
Auteurs principaux: | Hatice U. Osmanbeyoglu, Eneda Toska, Carmen Chan, José Baselga, Christina S. Leslie |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/99e7d5a79ab04befb459858c19d44824 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Pancancer survival analysis of cancer hallmark genes
par: Ádám Nagy, et autres
Publié: (2021) -
MXD3 as an Immunological and Prognostic Factor From Pancancer Analysis
par: Xiaoyu Zhang, et autres
Publié: (2021) -
The Oncogenic Role and Immune Infiltration for CARM1 Identified by Pancancer Analysis
par: Kui Liu, et autres
Publié: (2021) -
Chromatin-informed inference of transcriptional programs in gynecologic and basal breast cancers
par: Hatice U. Osmanbeyoglu, et autres
Publié: (2019) -
Ets transcription factor GABP controls T cell homeostasis and immunity
par: Chong T. Luo, et autres
Publié: (2017)