Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
Multi-omics data integration is a great challenge. Here, the authors compile a database of E. coliproteomics, transcriptomics, metabolomics and fluxomics data to train models of recurrent neural network and constrained regression, enabling prediction of bacterial responses to perturbations.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99ed3ae0d5e148ff8d397f4572e0ceba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Multi-omics data integration is a great challenge. Here, the authors compile a database of E. coliproteomics, transcriptomics, metabolomics and fluxomics data to train models of recurrent neural network and constrained regression, enabling prediction of bacterial responses to perturbations. |
---|