Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli

Multi-omics data integration is a great challenge. Here, the authors compile a database of E. coliproteomics, transcriptomics, metabolomics and fluxomics data to train models of recurrent neural network and constrained regression, enabling prediction of bacterial responses to perturbations.

Guardado en:
Detalles Bibliográficos
Autores principales: Minseung Kim, Navneet Rai, Violeta Zorraquino, Ilias Tagkopoulos
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/99ed3ae0d5e148ff8d397f4572e0ceba
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:99ed3ae0d5e148ff8d397f4572e0ceba
record_format dspace
spelling oai:doaj.org-article:99ed3ae0d5e148ff8d397f4572e0ceba2021-12-02T17:32:20ZMulti-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli10.1038/ncomms130902041-1723https://doaj.org/article/99ed3ae0d5e148ff8d397f4572e0ceba2016-10-01T00:00:00Zhttps://doi.org/10.1038/ncomms13090https://doaj.org/toc/2041-1723Multi-omics data integration is a great challenge. Here, the authors compile a database of E. coliproteomics, transcriptomics, metabolomics and fluxomics data to train models of recurrent neural network and constrained regression, enabling prediction of bacterial responses to perturbations.Minseung KimNavneet RaiVioleta ZorraquinoIlias TagkopoulosNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-12 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Minseung Kim
Navneet Rai
Violeta Zorraquino
Ilias Tagkopoulos
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
description Multi-omics data integration is a great challenge. Here, the authors compile a database of E. coliproteomics, transcriptomics, metabolomics and fluxomics data to train models of recurrent neural network and constrained regression, enabling prediction of bacterial responses to perturbations.
format article
author Minseung Kim
Navneet Rai
Violeta Zorraquino
Ilias Tagkopoulos
author_facet Minseung Kim
Navneet Rai
Violeta Zorraquino
Ilias Tagkopoulos
author_sort Minseung Kim
title Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
title_short Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
title_full Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
title_fullStr Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
title_full_unstemmed Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
title_sort multi-omics integration accurately predicts cellular state in unexplored conditions for escherichia coli
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/99ed3ae0d5e148ff8d397f4572e0ceba
work_keys_str_mv AT minseungkim multiomicsintegrationaccuratelypredictscellularstateinunexploredconditionsforescherichiacoli
AT navneetrai multiomicsintegrationaccuratelypredictscellularstateinunexploredconditionsforescherichiacoli
AT violetazorraquino multiomicsintegrationaccuratelypredictscellularstateinunexploredconditionsforescherichiacoli
AT iliastagkopoulos multiomicsintegrationaccuratelypredictscellularstateinunexploredconditionsforescherichiacoli
_version_ 1718380322696986624