Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
Multi-omics data integration is a great challenge. Here, the authors compile a database of E. coliproteomics, transcriptomics, metabolomics and fluxomics data to train models of recurrent neural network and constrained regression, enabling prediction of bacterial responses to perturbations.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99ed3ae0d5e148ff8d397f4572e0ceba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:99ed3ae0d5e148ff8d397f4572e0ceba |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:99ed3ae0d5e148ff8d397f4572e0ceba2021-12-02T17:32:20ZMulti-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli10.1038/ncomms130902041-1723https://doaj.org/article/99ed3ae0d5e148ff8d397f4572e0ceba2016-10-01T00:00:00Zhttps://doi.org/10.1038/ncomms13090https://doaj.org/toc/2041-1723Multi-omics data integration is a great challenge. Here, the authors compile a database of E. coliproteomics, transcriptomics, metabolomics and fluxomics data to train models of recurrent neural network and constrained regression, enabling prediction of bacterial responses to perturbations.Minseung KimNavneet RaiVioleta ZorraquinoIlias TagkopoulosNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-12 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Minseung Kim Navneet Rai Violeta Zorraquino Ilias Tagkopoulos Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli |
description |
Multi-omics data integration is a great challenge. Here, the authors compile a database of E. coliproteomics, transcriptomics, metabolomics and fluxomics data to train models of recurrent neural network and constrained regression, enabling prediction of bacterial responses to perturbations. |
format |
article |
author |
Minseung Kim Navneet Rai Violeta Zorraquino Ilias Tagkopoulos |
author_facet |
Minseung Kim Navneet Rai Violeta Zorraquino Ilias Tagkopoulos |
author_sort |
Minseung Kim |
title |
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli |
title_short |
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli |
title_full |
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli |
title_fullStr |
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli |
title_full_unstemmed |
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli |
title_sort |
multi-omics integration accurately predicts cellular state in unexplored conditions for escherichia coli |
publisher |
Nature Portfolio |
publishDate |
2016 |
url |
https://doaj.org/article/99ed3ae0d5e148ff8d397f4572e0ceba |
work_keys_str_mv |
AT minseungkim multiomicsintegrationaccuratelypredictscellularstateinunexploredconditionsforescherichiacoli AT navneetrai multiomicsintegrationaccuratelypredictscellularstateinunexploredconditionsforescherichiacoli AT violetazorraquino multiomicsintegrationaccuratelypredictscellularstateinunexploredconditionsforescherichiacoli AT iliastagkopoulos multiomicsintegrationaccuratelypredictscellularstateinunexploredconditionsforescherichiacoli |
_version_ |
1718380322696986624 |