Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
Multi-omics data integration is a great challenge. Here, the authors compile a database of E. coliproteomics, transcriptomics, metabolomics and fluxomics data to train models of recurrent neural network and constrained regression, enabling prediction of bacterial responses to perturbations.
Guardado en:
Autores principales: | Minseung Kim, Navneet Rai, Violeta Zorraquino, Ilias Tagkopoulos |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99ed3ae0d5e148ff8d397f4572e0ceba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting the evolution of Escherichia coli by a data-driven approach
por: Xiaokang Wang, et al.
Publicado: (2018) -
Accelerated knowledge discovery from omics data by optimal experimental design
por: Xiaokang Wang, et al.
Publicado: (2020) -
Integrated multi-omics analysis of RB-loss identifies widespread cellular programming and synthetic weaknesses
por: Swetha Rajasekaran, et al.
Publicado: (2021) -
Evidence of Multi-Domain Morphological Structures in Living Escherichia coli
por: Sharareh Tavaddod, et al.
Publicado: (2017) -
Unexplored Archaeal Diversity in the Great Ape Gut Microbiome
por: Kasie Raymann, et al.
Publicado: (2017)