African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning

Abstract Soil property and class maps for the continent of Africa were so far only available at very generalised scales, with many countries not mapped at all. Thanks to an increasing quantity and availability of soil samples collected at field point locations by various government and/or NGO funded...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tomislav Hengl, Matthew A. E. Miller, Josip Križan, Keith D. Shepherd, Andrew Sila, Milan Kilibarda, Ognjen Antonijević, Luka Glušica, Achim Dobermann, Stephan M. Haefele, Steve P. McGrath, Gifty E. Acquah, Jamie Collinson, Leandro Parente, Mohammadreza Sheykhmousa, Kazuki Saito, Jean-Martial Johnson, Jordan Chamberlin, Francis B. T. Silatsa, Martin Yemefack, John Wendt, Robert A. MacMillan, Ichsani Wheeler, Jonathan Crouch
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/99f484c0771a491480592db97c08eade
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:99f484c0771a491480592db97c08eade
record_format dspace
spelling oai:doaj.org-article:99f484c0771a491480592db97c08eade2021-12-02T13:17:56ZAfrican soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning10.1038/s41598-021-85639-y2045-2322https://doaj.org/article/99f484c0771a491480592db97c08eade2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85639-yhttps://doaj.org/toc/2045-2322Abstract Soil property and class maps for the continent of Africa were so far only available at very generalised scales, with many countries not mapped at all. Thanks to an increasing quantity and availability of soil samples collected at field point locations by various government and/or NGO funded projects, it is now possible to produce detailed pan-African maps of soil nutrients, including micro-nutrients at fine spatial resolutions. In this paper we describe production of a 30 m resolution Soil Information System of the African continent using, to date, the most comprehensive compilation of soil samples ( $$N \approx 150,000$$ N ≈ 150 , 000 ) and Earth Observation data. We produced predictions for soil pH, organic carbon (C) and total nitrogen (N), total carbon, effective Cation Exchange Capacity (eCEC), extractable—phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron (Fe), zinc (Zn)—silt, clay and sand, stone content, bulk density and depth to bedrock, at three depths (0, 20 and 50 cm) and using 2-scale 3D Ensemble Machine Learning framework implemented in the mlr (Machine Learning in R) package. As covariate layers we used 250 m resolution (MODIS, PROBA-V and SM2RAIN products), and 30 m resolution (Sentinel-2, Landsat and DTM derivatives) images. Our fivefold spatial Cross-Validation results showed varying accuracy levels ranging from the best performing soil pH (CCC = 0.900) to more poorly predictable extractable phosphorus (CCC = 0.654) and sulphur (CCC = 0.708) and depth to bedrock. Sentinel-2 bands SWIR (B11, B12), NIR (B09, B8A), Landsat SWIR bands, and vertical depth derived from 30 m resolution DTM, were the overall most important 30 m resolution covariates. Climatic data images—SM2RAIN, bioclimatic variables and MODIS Land Surface Temperature—however, remained as the overall most important variables for predicting soil chemical variables at continental scale. This publicly available 30-m Soil Information System of Africa aims at supporting numerous applications, including soil and fertilizer policies and investments, agronomic advice to close yield gaps, environmental programs, or targeting of nutrition interventions.Tomislav HenglMatthew A. E. MillerJosip KrižanKeith D. ShepherdAndrew SilaMilan KilibardaOgnjen AntonijevićLuka GlušicaAchim DobermannStephan M. HaefeleSteve P. McGrathGifty E. AcquahJamie CollinsonLeandro ParenteMohammadreza SheykhmousaKazuki SaitoJean-Martial JohnsonJordan ChamberlinFrancis B. T. SilatsaMartin YemefackJohn WendtRobert A. MacMillanIchsani WheelerJonathan CrouchNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-18 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Tomislav Hengl
Matthew A. E. Miller
Josip Križan
Keith D. Shepherd
Andrew Sila
Milan Kilibarda
Ognjen Antonijević
Luka Glušica
Achim Dobermann
Stephan M. Haefele
Steve P. McGrath
Gifty E. Acquah
Jamie Collinson
Leandro Parente
Mohammadreza Sheykhmousa
Kazuki Saito
Jean-Martial Johnson
Jordan Chamberlin
Francis B. T. Silatsa
Martin Yemefack
John Wendt
Robert A. MacMillan
Ichsani Wheeler
Jonathan Crouch
African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning
description Abstract Soil property and class maps for the continent of Africa were so far only available at very generalised scales, with many countries not mapped at all. Thanks to an increasing quantity and availability of soil samples collected at field point locations by various government and/or NGO funded projects, it is now possible to produce detailed pan-African maps of soil nutrients, including micro-nutrients at fine spatial resolutions. In this paper we describe production of a 30 m resolution Soil Information System of the African continent using, to date, the most comprehensive compilation of soil samples ( $$N \approx 150,000$$ N ≈ 150 , 000 ) and Earth Observation data. We produced predictions for soil pH, organic carbon (C) and total nitrogen (N), total carbon, effective Cation Exchange Capacity (eCEC), extractable—phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron (Fe), zinc (Zn)—silt, clay and sand, stone content, bulk density and depth to bedrock, at three depths (0, 20 and 50 cm) and using 2-scale 3D Ensemble Machine Learning framework implemented in the mlr (Machine Learning in R) package. As covariate layers we used 250 m resolution (MODIS, PROBA-V and SM2RAIN products), and 30 m resolution (Sentinel-2, Landsat and DTM derivatives) images. Our fivefold spatial Cross-Validation results showed varying accuracy levels ranging from the best performing soil pH (CCC = 0.900) to more poorly predictable extractable phosphorus (CCC = 0.654) and sulphur (CCC = 0.708) and depth to bedrock. Sentinel-2 bands SWIR (B11, B12), NIR (B09, B8A), Landsat SWIR bands, and vertical depth derived from 30 m resolution DTM, were the overall most important 30 m resolution covariates. Climatic data images—SM2RAIN, bioclimatic variables and MODIS Land Surface Temperature—however, remained as the overall most important variables for predicting soil chemical variables at continental scale. This publicly available 30-m Soil Information System of Africa aims at supporting numerous applications, including soil and fertilizer policies and investments, agronomic advice to close yield gaps, environmental programs, or targeting of nutrition interventions.
format article
author Tomislav Hengl
Matthew A. E. Miller
Josip Križan
Keith D. Shepherd
Andrew Sila
Milan Kilibarda
Ognjen Antonijević
Luka Glušica
Achim Dobermann
Stephan M. Haefele
Steve P. McGrath
Gifty E. Acquah
Jamie Collinson
Leandro Parente
Mohammadreza Sheykhmousa
Kazuki Saito
Jean-Martial Johnson
Jordan Chamberlin
Francis B. T. Silatsa
Martin Yemefack
John Wendt
Robert A. MacMillan
Ichsani Wheeler
Jonathan Crouch
author_facet Tomislav Hengl
Matthew A. E. Miller
Josip Križan
Keith D. Shepherd
Andrew Sila
Milan Kilibarda
Ognjen Antonijević
Luka Glušica
Achim Dobermann
Stephan M. Haefele
Steve P. McGrath
Gifty E. Acquah
Jamie Collinson
Leandro Parente
Mohammadreza Sheykhmousa
Kazuki Saito
Jean-Martial Johnson
Jordan Chamberlin
Francis B. T. Silatsa
Martin Yemefack
John Wendt
Robert A. MacMillan
Ichsani Wheeler
Jonathan Crouch
author_sort Tomislav Hengl
title African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning
title_short African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning
title_full African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning
title_fullStr African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning
title_full_unstemmed African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning
title_sort african soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/99f484c0771a491480592db97c08eade
work_keys_str_mv AT tomislavhengl africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT matthewaemiller africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT josipkrizan africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT keithdshepherd africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT andrewsila africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT milankilibarda africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT ognjenantonijevic africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT lukaglusica africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT achimdobermann africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT stephanmhaefele africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT stevepmcgrath africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT giftyeacquah africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT jamiecollinson africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT leandroparente africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT mohammadrezasheykhmousa africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT kazukisaito africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT jeanmartialjohnson africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT jordanchamberlin africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT francisbtsilatsa africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT martinyemefack africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT johnwendt africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT robertamacmillan africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT ichsaniwheeler africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
AT jonathancrouch africansoilpropertiesandnutrientsmappedat30mspatialresolutionusingtwoscaleensemblemachinelearning
_version_ 1718393346330722304