Pressure and temperature predictions of Al2O3/water nanofluid flow in a porous pipe for different nanoparticles volume fractions: combination of CFD and ACOFIS
Abstract Artificial intelligence (AI) techniques have illustrated significant roles in finding general patterns of CFD (Computational fluid dynamics) results. This study is conducted to develop combination of the ant colony optimization (ACO) algorithm with the fuzzy inference system (ACOFIS) for le...
Guardado en:
Autores principales: | Meisam Babanezhad, Iman Behroyan, Azam Marjani, Saeed Shirazian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/99fe97b4f70e40189af3530e8b6f24c9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Velocity prediction of nanofluid in a heated porous pipe: DEFIS learning of CFD results
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Prediction of velocity profile of water based copper nanofluid in a heated porous tube using CFD and genetic algorithm
por: Tiziana Ciano, et al.
Publicado: (2021) -
Investigation on performance of particle swarm optimization (PSO) algorithm based fuzzy inference system (PSOFIS) in a combination of CFD modeling for prediction of fluid flow
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Thermal prediction of turbulent forced convection of nanofluid using computational fluid dynamics coupled genetic algorithm with fuzzy interface system
por: Meisam Babanezhad, et al.
Publicado: (2021)