Temporal Changes in Physiological Responses of Bay Scallop: Performance of Antioxidant Mechanism in <i>Argopecten irradians</i> in Response to Sudden Changes in Habitat Salinity

Changes to habitat salinity may induce oxidative stress in aquatic organisms. The effect of salinity on the antioxidant function of bay scallops was investigated at 55, 70, 85 and 120% of seawater salinity (SW), with 100% SW as the control. The scallops were sampled 0, 6, 12, 24, 48 and 72 h after t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jin Ah Song, Cheol Young Choi
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/9a00e954fd9c41c1b70ecfe6bc4f9ec6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Changes to habitat salinity may induce oxidative stress in aquatic organisms. The effect of salinity on the antioxidant function of bay scallops was investigated at 55, 70, 85 and 120% of seawater salinity (SW), with 100% SW as the control. The scallops were sampled 0, 6, 12, 24, 48 and 72 h after the salinity change to measure superoxide dismutase (SOD), catalase (CAT), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and lipid peroxidation (LPO) levels, as well as apoptosis in the digestive diverticula and/or hemolymph. The SOD immunohistochemistry and apoptotic response were assessed at 55% and 120% SW at 12 h. Antioxidant expressions at 55% and 70% SW peaked at 24 h or 48 h, and then decreased. At 120% SW, they increased with exposure time. The H<sub>2</sub>O<sub>2</sub> and LPO levels at each SW increased significantly with time. A comet assay also revealed that changes in salinity increased the rate of nuclear DNA damage in all the salinity groups. Thus, variations in salinity result in significant physiological responses in bay scallops. A change in habitat salinity of 15% or more produces oxidative stress that cannot be resolved by the body’s antioxidant mechanism, suggesting that excessive generation of reactive oxygen species can lead to cell death.