Intrinsic Interferon Signaling Regulates the Cell Death and Mesenchymal Phenotype of Glioblastoma Stem Cells

Interferon (IFN) signaling contributes to stemness, cell proliferation, cell death, and cytokine signaling in cancer and immune cells; however, the role of IFN signaling in glioblastoma (GBM) and GBM stem-like cells (GSCs) is unclear. Here, we investigated the role of cancer-cell-intrinsic IFN signa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sabbir Khan, Rajasekaran Mahalingam, Shayak Sen, Emmanuel Martinez-Ledesma, Arshad Khan, Kaitlin Gandy, Frederick F. Lang, Erik P. Sulman, Kristin D. Alfaro-Munoz, Nazanin K. Majd, Veerakumar Balasubramaniyan, John F. de Groot
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/9a0400ac6bca4615aa0d2f214f8962d5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Interferon (IFN) signaling contributes to stemness, cell proliferation, cell death, and cytokine signaling in cancer and immune cells; however, the role of IFN signaling in glioblastoma (GBM) and GBM stem-like cells (GSCs) is unclear. Here, we investigated the role of cancer-cell-intrinsic IFN signaling in tumorigenesis in GBM. We report here that GSCs and GBM tumors exhibited differential cell-intrinsic type I and type II IFN signaling, and high IFN/STAT1 signaling was associated with mesenchymal phenotype and poor survival outcomes. In addition, chronic inhibition of IFN/STAT1 signaling decreased cell proliferation and mesenchymal signatures in GSCs with intrinsically high IFN/STAT1 signaling. IFN-β exposure induced apoptosis in GSCs with intrinsically high IFN/STAT1 signaling, and this effect was abolished by the pharmacological inhibitor ruxolitinib and STAT1 knockdown. We provide evidence for targeting IFN signaling in a specific sub-group of GBM patients. IFN-β may be a promising candidate for adjuvant GBM therapy.