Machine learning uncovers cell identity regulator by histone code
Identification of genes that determine and regulate cell identity remains challenging. Here, the authors use machine learning to identify cell identity genes and master regulator transcription factors based on gene expression profiles and histone modifications.
Guardado en:
Autores principales: | Bo Xia, Dongyu Zhao, Guangyu Wang, Min Zhang, Jie Lv, Alin S. Tomoiaga, Yanqiang Li, Xin Wang, Shu Meng, John P. Cooke, Qi Cao, Lili Zhang, Kaifu Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9a053b7a11724a1a815e60f452301743 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Broad genic repression domains signify enhanced silencing of oncogenes
por: Dongyu Zhao, et al.
Publicado: (2020) -
An Analysis of Contemporary Sources to Uncover the Medieval Identity of the Drink Bochet
por: Susan Verberg
Publicado: (2020) -
A primacy code for odor identity
por: Christopher D. Wilson, et al.
Publicado: (2017) -
Structural phylogenomics retrodicts the origin of the genetic code and uncovers the evolutionary impact of protein flexibility.
por: Gustavo Caetano-Anollés, et al.
Publicado: (2013) -
RUSSIAN CULTURAL (CIVILIZATIONAL) CODE: IDENTITY AND POLICY
por: O. Yakhshiyan
Publicado: (2019)