Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand

In this study, the authors investigate the predictability of sudden eruptions, motivated by the 2019 eruption at Whakaari (White Island), New Zealand. The paper proposes a machine learning approach that is able to identify eruption precursors in data streaming from a single seismic station at Whakaa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: D. E. Dempsey, S. J. Cronin, S. Mei, A. W. Kempa-Liehr
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/9a10873129be47a1b81e8531c5177be5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9a10873129be47a1b81e8531c5177be5
record_format dspace
spelling oai:doaj.org-article:9a10873129be47a1b81e8531c5177be52021-12-02T16:08:14ZAutomatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand10.1038/s41467-020-17375-22041-1723https://doaj.org/article/9a10873129be47a1b81e8531c5177be52020-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17375-2https://doaj.org/toc/2041-1723In this study, the authors investigate the predictability of sudden eruptions, motivated by the 2019 eruption at Whakaari (White Island), New Zealand. The paper proposes a machine learning approach that is able to identify eruption precursors in data streaming from a single seismic station at Whakaari.D. E. DempseyS. J. CroninS. MeiA. W. Kempa-LiehrNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-8 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
D. E. Dempsey
S. J. Cronin
S. Mei
A. W. Kempa-Liehr
Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand
description In this study, the authors investigate the predictability of sudden eruptions, motivated by the 2019 eruption at Whakaari (White Island), New Zealand. The paper proposes a machine learning approach that is able to identify eruption precursors in data streaming from a single seismic station at Whakaari.
format article
author D. E. Dempsey
S. J. Cronin
S. Mei
A. W. Kempa-Liehr
author_facet D. E. Dempsey
S. J. Cronin
S. Mei
A. W. Kempa-Liehr
author_sort D. E. Dempsey
title Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand
title_short Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand
title_full Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand
title_fullStr Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand
title_full_unstemmed Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand
title_sort automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at whakaari, new zealand
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/9a10873129be47a1b81e8531c5177be5
work_keys_str_mv AT dedempsey automaticprecursorrecognitionandrealtimeforecastingofsuddenexplosivevolcaniceruptionsatwhakaarinewzealand
AT sjcronin automaticprecursorrecognitionandrealtimeforecastingofsuddenexplosivevolcaniceruptionsatwhakaarinewzealand
AT smei automaticprecursorrecognitionandrealtimeforecastingofsuddenexplosivevolcaniceruptionsatwhakaarinewzealand
AT awkempaliehr automaticprecursorrecognitionandrealtimeforecastingofsuddenexplosivevolcaniceruptionsatwhakaarinewzealand
_version_ 1718384546092679168