G-computation and machine learning for estimating the causal effects of binary exposure statuses on binary outcomes
Abstract In clinical research, there is a growing interest in the use of propensity score-based methods to estimate causal effects. G-computation is an alternative because of its high statistical power. Machine learning is also increasingly used because of its possible robustness to model misspecifi...
Guardado en:
Autores principales: | Florent Le Borgne, Arthur Chatton, Maxime Léger, Rémi Lenain, Yohann Foucher |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9a15763593834528a4a5936250ed81c7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
G-computation, propensity score-based methods, and targeted maximum likelihood estimator for causal inference with different covariates sets: a comparative simulation study
por: Arthur Chatton, et al.
Publicado: (2020) -
A Highly Robust Binary Neural Network Inference Accelerator Based on Binary Memristors
por: Yiyang Zhao, et al.
Publicado: (2021) -
The Binary Classification of Protein Kinases
por: Elkoshi Z
Publicado: (2021) -
The Binary Classification Of Chronic Diseases
por: Elkoshi Z
Publicado: (2019) -
Binary world/bivalent logic
por: Harald Kittler
Publicado: (2012)