Construction and potential application of bacterial superoxide dismutase expressed in Bacillus subtilis against mycotoxins

Oxidative stress, which could be evoked by numerous inducements including mycotoxins like deoxynivalenol (DON), cause severe damages to organisms. Antioxidants are promising protectants against oxidative stress that could be applied in pharmaceutical, cosmetic, and food and feed industries. In this...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xueqian Dong, Wei Wang, Tianyi Jiang, Yanmin Zhang, Hongyu Han, Yonggang Zhang, Chunyu Yang
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9a1d077b469d45debc7fda5c23842df8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Oxidative stress, which could be evoked by numerous inducements including mycotoxins like deoxynivalenol (DON), cause severe damages to organisms. Antioxidants are promising protectants against oxidative stress that could be applied in pharmaceutical, cosmetic, and food and feed industries. In this study, a thermostable and acidophilic superoxide dismutase (AaSOD) was used to develop an antioxidant product that can potentially protect organisms from oxidative stress related damages. The enzyme was successfully expressed as an extracelluar protein in Bacillus subtilis with a high yield. To obtain a feasible protocol for industrial production of AaSOD, the fermentation mediums that are commonly used for culturing B. subtilis were screened, the feasibility of expressing AaSOD without antibiotic as selection pressure was confirmed, and the effect of using lactose as an inducer instead of isopropyl-β-d-thiogalactoside (IPTG) was investigated. Batch fermentation was conducted to validate the optimized conditions for AaSOD production, and 6530 U mL-1 of SOD activity was obtained in the fermentation broth. The dry powder product of AaSOD with an activity of 22202 U g-1 was prepared by spray-drying and was administrated on zebrafish to test its function as a protectant against DON, and thus gained a significant redress of the reactive oxygen species (ROS) accumulation induced by DON. Taken together, this study provides a feasible protocol to prepare the AaSOD-based antioxidant product that is potentially applied in livestock industry.