Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation

Abstract In soils, phosphorus (P) exists in numerous organic and inorganic forms. However, plants can only acquire inorganic orthophosphate (Pi), meaning global crop production is frequently limited by P availability. To overcome this problem, rock phosphate fertilisers are heavily applied, often wi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ian D. E. A. Lidbury, Andrew R. J. Murphy, Tandra D. Fraser, Gary D. Bending, Alexandra M. E. Jones, Jonathan D. Moore, Andrew Goodall, Mark Tibbett, John P. Hammond, David J. Scanlan, Elizabeth M. H. Wellington
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9a2a1bc08e2a4e4d979823a81956a0d5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9a2a1bc08e2a4e4d979823a81956a0d5
record_format dspace
spelling oai:doaj.org-article:9a2a1bc08e2a4e4d979823a81956a0d52021-12-02T12:32:29ZIdentification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation10.1038/s41598-017-02327-62045-2322https://doaj.org/article/9a2a1bc08e2a4e4d979823a81956a0d52017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02327-6https://doaj.org/toc/2045-2322Abstract In soils, phosphorus (P) exists in numerous organic and inorganic forms. However, plants can only acquire inorganic orthophosphate (Pi), meaning global crop production is frequently limited by P availability. To overcome this problem, rock phosphate fertilisers are heavily applied, often with negative environmental and socio-economic consequences. The organic P fraction of soil contains phospholipids that are rapidly degraded resulting in the release of bioavailable Pi. However, the mechanisms behind this process remain unknown. We identified and experimentally confirmed the function of two secreted glycerolphosphodiesterases, GlpQI and GlpQII, found in Pseudomonas stutzeri DSM4166 and Pseudomonas fluorescens SBW25, respectively. A series of co-cultivation experiments revealed that in these Pseudomonas strains, cleavage of glycerolphosphorylcholine and its breakdown product G3P occurs extracellularly allowing other bacteria to benefit from this metabolism. Analyses of metagenomic and metatranscriptomic datasets revealed that this trait is widespread among soil bacteria with Actinobacteria and Proteobacteria, specifically Betaproteobacteria and Gammaproteobacteria, the likely major players.Ian D. E. A. LidburyAndrew R. J. MurphyTandra D. FraserGary D. BendingAlexandra M. E. JonesJonathan D. MooreAndrew GoodallMark TibbettJohn P. HammondDavid J. ScanlanElizabeth M. H. WellingtonNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ian D. E. A. Lidbury
Andrew R. J. Murphy
Tandra D. Fraser
Gary D. Bending
Alexandra M. E. Jones
Jonathan D. Moore
Andrew Goodall
Mark Tibbett
John P. Hammond
David J. Scanlan
Elizabeth M. H. Wellington
Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation
description Abstract In soils, phosphorus (P) exists in numerous organic and inorganic forms. However, plants can only acquire inorganic orthophosphate (Pi), meaning global crop production is frequently limited by P availability. To overcome this problem, rock phosphate fertilisers are heavily applied, often with negative environmental and socio-economic consequences. The organic P fraction of soil contains phospholipids that are rapidly degraded resulting in the release of bioavailable Pi. However, the mechanisms behind this process remain unknown. We identified and experimentally confirmed the function of two secreted glycerolphosphodiesterases, GlpQI and GlpQII, found in Pseudomonas stutzeri DSM4166 and Pseudomonas fluorescens SBW25, respectively. A series of co-cultivation experiments revealed that in these Pseudomonas strains, cleavage of glycerolphosphorylcholine and its breakdown product G3P occurs extracellularly allowing other bacteria to benefit from this metabolism. Analyses of metagenomic and metatranscriptomic datasets revealed that this trait is widespread among soil bacteria with Actinobacteria and Proteobacteria, specifically Betaproteobacteria and Gammaproteobacteria, the likely major players.
format article
author Ian D. E. A. Lidbury
Andrew R. J. Murphy
Tandra D. Fraser
Gary D. Bending
Alexandra M. E. Jones
Jonathan D. Moore
Andrew Goodall
Mark Tibbett
John P. Hammond
David J. Scanlan
Elizabeth M. H. Wellington
author_facet Ian D. E. A. Lidbury
Andrew R. J. Murphy
Tandra D. Fraser
Gary D. Bending
Alexandra M. E. Jones
Jonathan D. Moore
Andrew Goodall
Mark Tibbett
John P. Hammond
David J. Scanlan
Elizabeth M. H. Wellington
author_sort Ian D. E. A. Lidbury
title Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation
title_short Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation
title_full Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation
title_fullStr Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation
title_full_unstemmed Identification of extracellular glycerophosphodiesterases in Pseudomonas and their role in soil organic phosphorus remineralisation
title_sort identification of extracellular glycerophosphodiesterases in pseudomonas and their role in soil organic phosphorus remineralisation
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/9a2a1bc08e2a4e4d979823a81956a0d5
work_keys_str_mv AT iandealidbury identificationofextracellularglycerophosphodiesterasesinpseudomonasandtheirroleinsoilorganicphosphorusremineralisation
AT andrewrjmurphy identificationofextracellularglycerophosphodiesterasesinpseudomonasandtheirroleinsoilorganicphosphorusremineralisation
AT tandradfraser identificationofextracellularglycerophosphodiesterasesinpseudomonasandtheirroleinsoilorganicphosphorusremineralisation
AT garydbending identificationofextracellularglycerophosphodiesterasesinpseudomonasandtheirroleinsoilorganicphosphorusremineralisation
AT alexandramejones identificationofextracellularglycerophosphodiesterasesinpseudomonasandtheirroleinsoilorganicphosphorusremineralisation
AT jonathandmoore identificationofextracellularglycerophosphodiesterasesinpseudomonasandtheirroleinsoilorganicphosphorusremineralisation
AT andrewgoodall identificationofextracellularglycerophosphodiesterasesinpseudomonasandtheirroleinsoilorganicphosphorusremineralisation
AT marktibbett identificationofextracellularglycerophosphodiesterasesinpseudomonasandtheirroleinsoilorganicphosphorusremineralisation
AT johnphammond identificationofextracellularglycerophosphodiesterasesinpseudomonasandtheirroleinsoilorganicphosphorusremineralisation
AT davidjscanlan identificationofextracellularglycerophosphodiesterasesinpseudomonasandtheirroleinsoilorganicphosphorusremineralisation
AT elizabethmhwellington identificationofextracellularglycerophosphodiesterasesinpseudomonasandtheirroleinsoilorganicphosphorusremineralisation
_version_ 1718394050954919936