Matching Pursuit Algorithm for Decoding of Binary LDPC Codes
This paper presents a novel hard decision decoding algorithm for low-density parity-check (LDPC) codes, in which the stand matching pursuit (MP) is adapted for error pattern recovery from syndrome over GF(2). In this algorithm, the operation of inner product can be converted into XOR and accumulatio...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi-Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9a3205634f11429697135529c23b2491 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This paper presents a novel hard decision decoding algorithm for low-density parity-check (LDPC) codes, in which the stand matching pursuit (MP) is adapted for error pattern recovery from syndrome over GF(2). In this algorithm, the operation of inner product can be converted into XOR and accumulation, which makes the matching pursuit work with a high efficiency. In addition, the maximum iteration is theoretically explored in relation to sparsity and error probability according to the sparse theory. To evaluate the proposed algorithm, two MP-based decoding algorithms are simulated and compared over an AWGN channel, i.e., generic MP (GMP) and syndrome MP (SMP). Simulation results show that the GMP algorithm outperforms the SMP by 0.8 dB at BER=10−5. |
---|