The predictive skill of convolutional neural networks models for disease forecasting.
In this paper we investigate the utility of one-dimensional convolutional neural network (CNN) models in epidemiological forecasting. Deep learning models, in particular variants of recurrent neural networks (RNNs) have been studied for ILI (Influenza-Like Illness) forecasting, and have achieved a h...
Guardado en:
Autores principales: | Kookjin Lee, Jaideep Ray, Cosmin Safta |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9a39ca67b96c4b9d9f34bda94007bbe8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automated spectroscopic modelling with optimised convolutional neural networks
por: Zefang Shen, et al.
Publicado: (2021) -
PM10 and PM2.5 real-time prediction models using an interpolated convolutional neural network
por: Sangwon Chae, et al.
Publicado: (2021) -
Prediction of pharmacological activities from chemical structures with graph convolutional neural networks
por: Miyuki Sakai, et al.
Publicado: (2021) -
Improving prediction and assessment of global fires using multilayer neural networks
por: Jaideep Joshi, et al.
Publicado: (2021) -
Early forecasting of tsunami inundation from tsunami and geodetic observation data with convolutional neural networks
por: Fumiyasu Makinoshima, et al.
Publicado: (2021)