Capturing hidden regulation based on noise change of gene expression level from single cell RNA-seq in yeast
Abstract Recent progress in high throughput single cell RNA-seq (scRNA-seq) has activated the development of data-driven inferring methods of gene regulatory networks. Most network estimations assume that perturbations produce downstream effects. However, the effects of gene perturbations are someti...
Guardado en:
Autores principales: | Thoma Itoh, Takashi Makino |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9a3d106e512c4a54aad2f138fd9fd3f1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Correction: Corrigendum: Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
por: Jong Kyoung Kim, et al.
Publicado: (2016) -
RNA-Seq reveals infection-related gene expression changes in Phytophthora capsici.
por: Xiao-Ren Chen, et al.
Publicado: (2013) -
Differential expression profile of gluten-specific T cells identified by single-cell RNA-seq.
por: Ying Yao, et al.
Publicado: (2021) -
The utility of shallow RNA-Seq for documenting differential gene expression in genes with high and low levels of expression.
por: Joel Atallah, et al.
Publicado: (2013) -
Splicing profile by capture RNA-seq identifies pathogenic germline variants in tumor suppressor genes
por: Tyler Landrith, et al.
Publicado: (2020)