Stability analysis on dark solitons in quasi-1D Bose–Einstein condensate with three-body interactions
Abstract The stability properties of dark solitons in quasi-one-dimensional Bose–Einstein condensate (BEC) loaded in a Jacobian elliptic sine potential with three-body interactions are investigated theoretically. The solitons are obtained by the Newton-Conjugate Gradient method. A stationary cubic-q...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9a44ccc159844b96bffb71417e17b836 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The stability properties of dark solitons in quasi-one-dimensional Bose–Einstein condensate (BEC) loaded in a Jacobian elliptic sine potential with three-body interactions are investigated theoretically. The solitons are obtained by the Newton-Conjugate Gradient method. A stationary cubic-quintic nonlinear Schrödinger equation is derived to describe the profiles of solitons via the multi-scale technique. It is found that the three-body interaction has distinct effect on the stability properties of solitons. Especially, such a nonlinear system supports the so-called dark solitons (kink or bubble), which can be excited not only in the gap, but also in the band. The bubbles are always linearly and dynamically unstable, and they cannot be excited if the three-body interaction is absent. Both stable and unstable kinks, depending on the physical parameters, can be excited in the BEC system. |
---|