Application of full-genome analysis to diagnose rare monogenic disorders

Abstract Current genetic testenhancer and narrows the diagnostic intervals for rare diseases provide a diagnosis in only a modest proportion of cases. The Full-Genome Analysis method, FGA, combines long-range assembly and whole-genome sequencing to detect small variants, structural variants with bre...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Joseph T. Shieh, Monica Penon-Portmann, Karen H. Y. Wong, Michal Levy-Sakin, Michelle Verghese, Anne Slavotinek, Renata C. Gallagher, Bryce A. Mendelsohn, Jessica Tenney, Daniah Beleford, Hazel Perry, Stephen K. Chow, Andrew G. Sharo, Steven E. Brenner, Zhongxia Qi, Jingwei Yu, Ophir D. Klein, David Martin, Pui-Yan Kwok, Dario Boffelli
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Acceso en línea:https://doaj.org/article/9a465491e52f48439eba018a2a0c7a7a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9a465491e52f48439eba018a2a0c7a7a
record_format dspace
spelling oai:doaj.org-article:9a465491e52f48439eba018a2a0c7a7a2021-12-02T15:15:24ZApplication of full-genome analysis to diagnose rare monogenic disorders10.1038/s41525-021-00241-52056-7944https://doaj.org/article/9a465491e52f48439eba018a2a0c7a7a2021-09-01T00:00:00Zhttps://doi.org/10.1038/s41525-021-00241-5https://doaj.org/toc/2056-7944Abstract Current genetic testenhancer and narrows the diagnostic intervals for rare diseases provide a diagnosis in only a modest proportion of cases. The Full-Genome Analysis method, FGA, combines long-range assembly and whole-genome sequencing to detect small variants, structural variants with breakpoint resolution, and phasing. We built a variant prioritization pipeline and tested FGA’s utility for diagnosis of rare diseases in a clinical setting. FGA identified structural variants and small variants with an overall diagnostic yield of 40% (20 of 50 cases) and 35% in exome-negative cases (8 of 23 cases), 4 of these were structural variants. FGA detected and mapped structural variants that are missed by short reads, including non-coding duplication, and phased variants across long distances of more than 180 kb. With the prioritization algorithm, longer DNA technologies could replace multiple tests for monogenic disorders and expand the range of variants detected. Our study suggests that genomes produced from technologies like FGA can improve variant detection and provide higher resolution genome maps for future application.Joseph T. ShiehMonica Penon-PortmannKaren H. Y. WongMichal Levy-SakinMichelle VergheseAnne SlavotinekRenata C. GallagherBryce A. MendelsohnJessica TenneyDaniah BelefordHazel PerryStephen K. ChowAndrew G. SharoSteven E. BrennerZhongxia QiJingwei YuOphir D. KleinDavid MartinPui-Yan KwokDario BoffelliNature PortfolioarticleMedicineRGeneticsQH426-470ENnpj Genomic Medicine, Vol 6, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Genetics
QH426-470
spellingShingle Medicine
R
Genetics
QH426-470
Joseph T. Shieh
Monica Penon-Portmann
Karen H. Y. Wong
Michal Levy-Sakin
Michelle Verghese
Anne Slavotinek
Renata C. Gallagher
Bryce A. Mendelsohn
Jessica Tenney
Daniah Beleford
Hazel Perry
Stephen K. Chow
Andrew G. Sharo
Steven E. Brenner
Zhongxia Qi
Jingwei Yu
Ophir D. Klein
David Martin
Pui-Yan Kwok
Dario Boffelli
Application of full-genome analysis to diagnose rare monogenic disorders
description Abstract Current genetic testenhancer and narrows the diagnostic intervals for rare diseases provide a diagnosis in only a modest proportion of cases. The Full-Genome Analysis method, FGA, combines long-range assembly and whole-genome sequencing to detect small variants, structural variants with breakpoint resolution, and phasing. We built a variant prioritization pipeline and tested FGA’s utility for diagnosis of rare diseases in a clinical setting. FGA identified structural variants and small variants with an overall diagnostic yield of 40% (20 of 50 cases) and 35% in exome-negative cases (8 of 23 cases), 4 of these were structural variants. FGA detected and mapped structural variants that are missed by short reads, including non-coding duplication, and phased variants across long distances of more than 180 kb. With the prioritization algorithm, longer DNA technologies could replace multiple tests for monogenic disorders and expand the range of variants detected. Our study suggests that genomes produced from technologies like FGA can improve variant detection and provide higher resolution genome maps for future application.
format article
author Joseph T. Shieh
Monica Penon-Portmann
Karen H. Y. Wong
Michal Levy-Sakin
Michelle Verghese
Anne Slavotinek
Renata C. Gallagher
Bryce A. Mendelsohn
Jessica Tenney
Daniah Beleford
Hazel Perry
Stephen K. Chow
Andrew G. Sharo
Steven E. Brenner
Zhongxia Qi
Jingwei Yu
Ophir D. Klein
David Martin
Pui-Yan Kwok
Dario Boffelli
author_facet Joseph T. Shieh
Monica Penon-Portmann
Karen H. Y. Wong
Michal Levy-Sakin
Michelle Verghese
Anne Slavotinek
Renata C. Gallagher
Bryce A. Mendelsohn
Jessica Tenney
Daniah Beleford
Hazel Perry
Stephen K. Chow
Andrew G. Sharo
Steven E. Brenner
Zhongxia Qi
Jingwei Yu
Ophir D. Klein
David Martin
Pui-Yan Kwok
Dario Boffelli
author_sort Joseph T. Shieh
title Application of full-genome analysis to diagnose rare monogenic disorders
title_short Application of full-genome analysis to diagnose rare monogenic disorders
title_full Application of full-genome analysis to diagnose rare monogenic disorders
title_fullStr Application of full-genome analysis to diagnose rare monogenic disorders
title_full_unstemmed Application of full-genome analysis to diagnose rare monogenic disorders
title_sort application of full-genome analysis to diagnose rare monogenic disorders
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9a465491e52f48439eba018a2a0c7a7a
work_keys_str_mv AT josephtshieh applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT monicapenonportmann applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT karenhywong applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT michallevysakin applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT michelleverghese applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT anneslavotinek applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT renatacgallagher applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT bryceamendelsohn applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT jessicatenney applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT daniahbeleford applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT hazelperry applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT stephenkchow applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT andrewgsharo applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT stevenebrenner applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT zhongxiaqi applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT jingweiyu applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT ophirdklein applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT davidmartin applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT puiyankwok applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
AT darioboffelli applicationoffullgenomeanalysistodiagnoseraremonogenicdisorders
_version_ 1718387523715072000