Synbiotic (Lactiplantibacillus pentosus GSSK2 and isomalto-oligosaccharides) supplementation modulates pathophysiology and gut dysbiosis in experimental metabolic syndrome

Abstract Metabolic syndrome a lifestyle disease, where diet and gut microbiota play a prodigious role in its initiation and progression. Prophylactic bio-interventions employing probiotics and prebiotics offer an alternate nutritional approach towards attenuating its progression. The present study a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sakshi Khanna, Mahendra Bishnoi, Kanthi Kiran Kondepudi, Geeta Shukla
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9a4d1cb247404e0ea1283d2c9e97cad5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Metabolic syndrome a lifestyle disease, where diet and gut microbiota play a prodigious role in its initiation and progression. Prophylactic bio-interventions employing probiotics and prebiotics offer an alternate nutritional approach towards attenuating its progression. The present study aimed to evaluate the protective efficacy of a novel synbiotic (Lactiplantibacillus pentosus GSSK2 + isomalto-oligosaccharides) in comparison to orlistat in an experimental model of metabolic syndrome. It was observed that supplementation of synbiotic for 12 weeks to Sprague Dawley rats fed with high fat diet (HFD), ameliorated the morphometric parameters i.e. weight gain, abdominal circumference, Lee’s index, BMI and visceral fat deposition along with significantly increased fecal Bacteroidetes to Firmicutes ratio, elevated population of Lactobacillus spp., Akkermansia spp., Faecalibacterium spp., Roseburia spp. and decreased Enterobacteriaceae compared with HFD animals. Additionally, synbiotic administration to HFD animals exhibited improved glucose clearance, lipid biomarkers, alleviated oxidative stress, prevented leaky gut phenotype, reduced serum lipopolysaccharides and modulated the inflammatory, lipid and glucose metabolism genes along with restored histomorphology of adipose tissue, colon and liver compared with HFD animals. Taken together, the study highlights the protective potential of synbiotic in comparison with its individual components in ameliorating HFD-induced metabolic complications.