Modeling and optimization the effective parameters of nanofluid heat transfer performance using artificial neural network and genetic algorithm method
The heat transfer coefficient and, as a result, the Nusselt (Nu) number for nanofluids are affected by parameters such as thermal conductivity, thermal capacity of the fluid and nanoparticles, flow pattern, nanofluid viscosity, volume fraction of suspended particles, particle shape, and size. Since...
Guardado en:
Autores principales: | Hadi Pourpasha, Pedram Farshad, Saeed Zeinali Heris |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9a719159c028440b841530d481485bfe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The atmospheric model of neural networks based on the improved Levenberg-Marquardt algorithm
por: Cui Wenhui, et al.
Publicado: (2021) -
Determination of the Initial Value Ranges of Nonlinear Solutions for a Log Ratio Bathymetric Inversion Model and Bathymetry Retrieval
por: Jiawei Qi, et al.
Publicado: (2021) -
Soft computing paradigm for Ferrofluid by exponentially stretched surface in the presence of magnetic dipole and heat transfer
por: Muhammad Shoaib, et al.
Publicado: (2022) -
Experimental investigation of a loop heat pipe with a flat evaporator and cupric oxide nanofluids as working fluid
por: Tianyuan Zhao, et al.
Publicado: (2021) -
The Effect of Magnetic Field with Nanofluid on Heat Transfer in a Horizontal Pipe
por: Abdulhassan A. Karamallah, et al.
Publicado: (2017)