TCAD-Machine Learning Framework for Device Variation and Operating Temperature Analysis With Experimental Demonstration
This work, for the first time, experimentally demonstrates a TCAD-Machine Learning (TCAD-ML) framework to assist the analysis of device-to-device variation and operating (ambient) temperature without the need of physical quantities extraction. The ML algorithm used in this work is the Principal Comp...
Guardado en:
Autores principales: | Hiu Yung Wong, Ming Xiao, Boyan Wang, Yan Ka Chiu, Xiaodong Yan, Jiahui Ma, Kohei Sasaki, Han Wang, Yuhao Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9a791aae934746e48454420b76d59832 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of Modular Power Converter Integrated with 5G Network
por: Sebastian Baba, et al.
Publicado: (2021) -
A Novel Nitrogen Ion Implantation Technique for Turning Thin Film “Normally On” AlGaN/GaN Transistor into “Normally Off” Using TCAD Simulation
por: Gene Sheu, et al.
Publicado: (2021) -
TCAD 2D numerical simulations for increasing efficiency of AlGaAs – GaAs Solar Cells
por: César Palacios A., et al.
Publicado: (2018) -
Optimized Device Geometry of Normally-On Field-Plate AlGaN/GaN High Electron Mobility Transistors for High Breakdown Performance Using TCAD Simulation
por: Sakhone Pharkphoumy, et al.
Publicado: (2021) -
Correlation between Ultra-Wide-Field Retinal Imaging Findings and Vascular Supra-Aortic Changes in Takayasu Arteritis
por: Barthelemy Poignet, et al.
Publicado: (2021)