Characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine

Qunyou Tan,1,* Dan He,2,* Mingjun Wu,2,* Lin Yang,3 Yong Ren,4 Juan Liu,2 Jingqing Zhang,21Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 2Medicine Engineering Research Center, Chongqing Medical University, Chongqing, 3Ch...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tan Q, He D, Wu M, Yang L, Ren Y, Liu J, Zhang J
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2013
Materias:
Acceso en línea:https://doaj.org/article/9a7fe3be28a94e49bf0b71c9cca71dc2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9a7fe3be28a94e49bf0b71c9cca71dc2
record_format dspace
spelling oai:doaj.org-article:9a7fe3be28a94e49bf0b71c9cca71dc22021-12-02T04:47:02ZCharacterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine1176-91141178-2013https://doaj.org/article/9a7fe3be28a94e49bf0b71c9cca71dc22013-02-01T00:00:00Zhttp://www.dovepress.com/characterization-activity-and-computer-modeling-of-a-molecular-inclusi-a12113https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Qunyou Tan,1,* Dan He,2,* Mingjun Wu,2,* Lin Yang,3 Yong Ren,4 Juan Liu,2 Jingqing Zhang,21Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 2Medicine Engineering Research Center, Chongqing Medical University, Chongqing, 3Chongqing Institute for Food and Drug Control, Chongqing, 4Center of Drug Discovery, Nanjing Normal University, Nanjing, People's Republic of China*These authors contributed equally to this workBackground: The purpose of this study was to develop, characterize, and investigate a molecular inclusion complex containing rifaldazine with good solubility and antibacterial activity.Methods: Rifaldazine, a lipophilic molecule, was encapsulated into the hydrophobic cavity of ß-cyclodextrin to form a molecular inclusion complex (RAABCD) with good solubility. RAABCD was prepared in a short time using a solid-state grinding method. The inclusion ratio, binding constant, and change in Gibbs free energy were determined by a phase solubility diagram and/or ultraviolet-visible spectroscopy. Differential scanning calorimetry and Fourier transform infrared spectroscopy of RAABCD were performed. Morphological features of RAABCD were observed by photomicroscopy. The most likely optimal configuration for RAABCD was simulated by computer modeling. Broth macrodilution testing was done to investigate the antibacterial activity of RAABCD.Results: The inclusion ratio, binding constant, and change in Gibbs free energy, determined by a phase solubility diagram and/or ultraviolet-visible spectroscopy were 1:1, 288.33/261.33 L/mol, and 32.29/31.73 kJ/mol, respectively. Differential scanning calorimetry and Fourier transformed infrared spectra of RAABCD confirmed the molecular interaction between rifaldazine and ß-cyclodextrin. The morphological difference between irregular and amorphous-shaped RAABCD and columnar-shaped rifaldazine further confirmed the molecular encapsulation of rifaldazine. The most likely optimal configuration for RAABCD was confirmed by computer modeling. Broth macrodilution testing indicated that RAABCD had good antibacterial activity.Conclusion: RAABCD had improved solubility and good activity, and might be a promising alternative for treatment of a range of bacterial infections.Keywords: rifaldazine, cyclodextrin inclusion complex, stoichiometric relationships, differential scanning calorimetry, Fourier transform infrared spectra, computer modelingTan QHe DWu MYang LRen YLiu JZhang JDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2013, Iss default, Pp 477-484 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Tan Q
He D
Wu M
Yang L
Ren Y
Liu J
Zhang J
Characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine
description Qunyou Tan,1,* Dan He,2,* Mingjun Wu,2,* Lin Yang,3 Yong Ren,4 Juan Liu,2 Jingqing Zhang,21Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 2Medicine Engineering Research Center, Chongqing Medical University, Chongqing, 3Chongqing Institute for Food and Drug Control, Chongqing, 4Center of Drug Discovery, Nanjing Normal University, Nanjing, People's Republic of China*These authors contributed equally to this workBackground: The purpose of this study was to develop, characterize, and investigate a molecular inclusion complex containing rifaldazine with good solubility and antibacterial activity.Methods: Rifaldazine, a lipophilic molecule, was encapsulated into the hydrophobic cavity of ß-cyclodextrin to form a molecular inclusion complex (RAABCD) with good solubility. RAABCD was prepared in a short time using a solid-state grinding method. The inclusion ratio, binding constant, and change in Gibbs free energy were determined by a phase solubility diagram and/or ultraviolet-visible spectroscopy. Differential scanning calorimetry and Fourier transform infrared spectroscopy of RAABCD were performed. Morphological features of RAABCD were observed by photomicroscopy. The most likely optimal configuration for RAABCD was simulated by computer modeling. Broth macrodilution testing was done to investigate the antibacterial activity of RAABCD.Results: The inclusion ratio, binding constant, and change in Gibbs free energy, determined by a phase solubility diagram and/or ultraviolet-visible spectroscopy were 1:1, 288.33/261.33 L/mol, and 32.29/31.73 kJ/mol, respectively. Differential scanning calorimetry and Fourier transformed infrared spectra of RAABCD confirmed the molecular interaction between rifaldazine and ß-cyclodextrin. The morphological difference between irregular and amorphous-shaped RAABCD and columnar-shaped rifaldazine further confirmed the molecular encapsulation of rifaldazine. The most likely optimal configuration for RAABCD was confirmed by computer modeling. Broth macrodilution testing indicated that RAABCD had good antibacterial activity.Conclusion: RAABCD had improved solubility and good activity, and might be a promising alternative for treatment of a range of bacterial infections.Keywords: rifaldazine, cyclodextrin inclusion complex, stoichiometric relationships, differential scanning calorimetry, Fourier transform infrared spectra, computer modeling
format article
author Tan Q
He D
Wu M
Yang L
Ren Y
Liu J
Zhang J
author_facet Tan Q
He D
Wu M
Yang L
Ren Y
Liu J
Zhang J
author_sort Tan Q
title Characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine
title_short Characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine
title_full Characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine
title_fullStr Characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine
title_full_unstemmed Characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine
title_sort characterization, activity, and computer modeling of a molecular inclusion complex containing rifaldazine
publisher Dove Medical Press
publishDate 2013
url https://doaj.org/article/9a7fe3be28a94e49bf0b71c9cca71dc2
work_keys_str_mv AT tanq characterizationactivityandcomputermodelingofamolecularinclusioncomplexcontainingrifaldazine
AT hed characterizationactivityandcomputermodelingofamolecularinclusioncomplexcontainingrifaldazine
AT wum characterizationactivityandcomputermodelingofamolecularinclusioncomplexcontainingrifaldazine
AT yangl characterizationactivityandcomputermodelingofamolecularinclusioncomplexcontainingrifaldazine
AT reny characterizationactivityandcomputermodelingofamolecularinclusioncomplexcontainingrifaldazine
AT liuj characterizationactivityandcomputermodelingofamolecularinclusioncomplexcontainingrifaldazine
AT zhangj characterizationactivityandcomputermodelingofamolecularinclusioncomplexcontainingrifaldazine
_version_ 1718401026073034752