Dynamical nonlinear memory capacitance in biomimetic membranes

Two-terminal memory elements hold promise to store and process information via history-dependent material configurations at low-energy cost. Here, Najem et al. show a voltage-controlled capacitive memory due to reversible geometrical changes in a lipid bilayer capable of learning via synapse-like pl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Joseph S. Najem, Md Sakib Hasan, R. Stanley Williams, Ryan J. Weiss, Garrett S. Rose, Graham J. Taylor, Stephen A. Sarles, C. Patrick Collier
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/9a8d9b0b85df4a97ac6417fe1c5592b3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9a8d9b0b85df4a97ac6417fe1c5592b3
record_format dspace
spelling oai:doaj.org-article:9a8d9b0b85df4a97ac6417fe1c5592b32021-12-02T15:35:32ZDynamical nonlinear memory capacitance in biomimetic membranes10.1038/s41467-019-11223-82041-1723https://doaj.org/article/9a8d9b0b85df4a97ac6417fe1c5592b32019-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-11223-8https://doaj.org/toc/2041-1723Two-terminal memory elements hold promise to store and process information via history-dependent material configurations at low-energy cost. Here, Najem et al. show a voltage-controlled capacitive memory due to reversible geometrical changes in a lipid bilayer capable of learning via synapse-like plasticity.Joseph S. NajemMd Sakib HasanR. Stanley WilliamsRyan J. WeissGarrett S. RoseGraham J. TaylorStephen A. SarlesC. Patrick CollierNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-11 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Joseph S. Najem
Md Sakib Hasan
R. Stanley Williams
Ryan J. Weiss
Garrett S. Rose
Graham J. Taylor
Stephen A. Sarles
C. Patrick Collier
Dynamical nonlinear memory capacitance in biomimetic membranes
description Two-terminal memory elements hold promise to store and process information via history-dependent material configurations at low-energy cost. Here, Najem et al. show a voltage-controlled capacitive memory due to reversible geometrical changes in a lipid bilayer capable of learning via synapse-like plasticity.
format article
author Joseph S. Najem
Md Sakib Hasan
R. Stanley Williams
Ryan J. Weiss
Garrett S. Rose
Graham J. Taylor
Stephen A. Sarles
C. Patrick Collier
author_facet Joseph S. Najem
Md Sakib Hasan
R. Stanley Williams
Ryan J. Weiss
Garrett S. Rose
Graham J. Taylor
Stephen A. Sarles
C. Patrick Collier
author_sort Joseph S. Najem
title Dynamical nonlinear memory capacitance in biomimetic membranes
title_short Dynamical nonlinear memory capacitance in biomimetic membranes
title_full Dynamical nonlinear memory capacitance in biomimetic membranes
title_fullStr Dynamical nonlinear memory capacitance in biomimetic membranes
title_full_unstemmed Dynamical nonlinear memory capacitance in biomimetic membranes
title_sort dynamical nonlinear memory capacitance in biomimetic membranes
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/9a8d9b0b85df4a97ac6417fe1c5592b3
work_keys_str_mv AT josephsnajem dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT mdsakibhasan dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT rstanleywilliams dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT ryanjweiss dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT garrettsrose dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT grahamjtaylor dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT stephenasarles dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
AT cpatrickcollier dynamicalnonlinearmemorycapacitanceinbiomimeticmembranes
_version_ 1718386549805023232