Tolerance to copper and to salinity in Daphnia longispina: implications within a climate change scenario.

Considering IPPC climate change scenarios, it is pertinent to predict situations where coastal ecosystems already impacted with chemical contamination became exposed to an additional stressor under a future scenario of seawater intrusion. Accordingly, the present study aimed at evaluating if a negat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: João Leitão, Rui Ribeiro, Amadeu M V M Soares, Isabel Lopes
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/9a9e2d1876e34dd885785e11b268a508
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Considering IPPC climate change scenarios, it is pertinent to predict situations where coastal ecosystems already impacted with chemical contamination became exposed to an additional stressor under a future scenario of seawater intrusion. Accordingly, the present study aimed at evaluating if a negative association between tolerance to a metal and to saltwater exists among genotypes of a freshwater organism. For this, five clonal lineages of the cladoceran Daphnia longispina O.F. Müller, exhibiting a differential tolerance to lethal levels of copper, were selected. Each clonal lineage was exposed to lethal and sublethal concentrations of sodium chloride (assumed as a protective surrogate to evaluate the toxicity of increased salinity to freshwater organisms). Mortality, time to release the first brood and total number of neonates per female were monitored and the somatic growth rate and intrinsic rate of natural increase were computed for each clonal lineage. Data here obtained were compared with their lethal responses to copper and significant negative correlations were found. These results suggest that genetically eroded populations of D. longispina, due to copper or salinity, may be particularly susceptible to a later exposure to the other contaminant supporting the multiple stressors differential tolerance.