Finite element analysis of steel beam-hollow column angle connection with blind bolts
In order to solve the problem of access to inside of hollow columns for tightening bolts and achieving a suitable connection both in terms of rigidity and stiffness and in terms of the proper behavior, various solutions have been suggested by researchers. One of these solutions is steel beam to holl...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | FA |
Publicado: |
Iranian Society of Structrual Engineering (ISSE)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ab05f686d4549608e166d513249f31f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In order to solve the problem of access to inside of hollow columns for tightening bolts and achieving a suitable connection both in terms of rigidity and stiffness and in terms of the proper behavior, various solutions have been suggested by researchers. One of these solutions is steel beam to hollow column connection by an angle and blind bolts. This connection can be made in different types with different number of blind bolts. Connection with flange angle and blind bolts have showed proper and semi-rigid behaviour.In this research, the effect of changing various parameters on the behavior of steel beam-hollow column connection with angle and blind bolts was investigated under monotonic loading. The nonlinear finite elements method and Abaqus software was considered and solid three-dimensional elements as continuum elements was supplied in connection models. The behavior of connection was studied by changing various parameters such as beam height, column thickness, length of angle leg and number of blind bolts. The results show that increasing height of the beam, thickness of the column and length of angle leg raises the connection’s rigidity. Also, increasing the above mentioned parameters leads a simple connection toward semi-rigid connection. Also, by studying the models, the rigidity degree of most models except a few of them, which is less than 20%, is between 20% and 90%. Considering the rigidity degree, studied models behaved as semi-rigid connections. |
---|