Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry

Predicting chromatographic retention times (RTs) has proven beneficial in proteomics but has not yet been achieved for crosslinked peptides. Here, the authors develop an RT prediction tool for crosslinked peptides and leverage predicted RTs to increase identifications in crosslinking mass spectromet...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sven H. Giese, Ludwig R. Sinn, Fritz Wegner, Juri Rappsilber
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/9ab330b45697406d85ede559b5464d05
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9ab330b45697406d85ede559b5464d05
record_format dspace
spelling oai:doaj.org-article:9ab330b45697406d85ede559b5464d052021-12-02T15:49:49ZRetention time prediction using neural networks increases identifications in crosslinking mass spectrometry10.1038/s41467-021-23441-02041-1723https://doaj.org/article/9ab330b45697406d85ede559b5464d052021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23441-0https://doaj.org/toc/2041-1723Predicting chromatographic retention times (RTs) has proven beneficial in proteomics but has not yet been achieved for crosslinked peptides. Here, the authors develop an RT prediction tool for crosslinked peptides and leverage predicted RTs to increase identifications in crosslinking mass spectrometry studies.Sven H. GieseLudwig R. SinnFritz WegnerJuri RappsilberNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Sven H. Giese
Ludwig R. Sinn
Fritz Wegner
Juri Rappsilber
Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry
description Predicting chromatographic retention times (RTs) has proven beneficial in proteomics but has not yet been achieved for crosslinked peptides. Here, the authors develop an RT prediction tool for crosslinked peptides and leverage predicted RTs to increase identifications in crosslinking mass spectrometry studies.
format article
author Sven H. Giese
Ludwig R. Sinn
Fritz Wegner
Juri Rappsilber
author_facet Sven H. Giese
Ludwig R. Sinn
Fritz Wegner
Juri Rappsilber
author_sort Sven H. Giese
title Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry
title_short Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry
title_full Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry
title_fullStr Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry
title_full_unstemmed Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry
title_sort retention time prediction using neural networks increases identifications in crosslinking mass spectrometry
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/9ab330b45697406d85ede559b5464d05
work_keys_str_mv AT svenhgiese retentiontimepredictionusingneuralnetworksincreasesidentificationsincrosslinkingmassspectrometry
AT ludwigrsinn retentiontimepredictionusingneuralnetworksincreasesidentificationsincrosslinkingmassspectrometry
AT fritzwegner retentiontimepredictionusingneuralnetworksincreasesidentificationsincrosslinkingmassspectrometry
AT jurirappsilber retentiontimepredictionusingneuralnetworksincreasesidentificationsincrosslinkingmassspectrometry
_version_ 1718385706476240896