Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry
Predicting chromatographic retention times (RTs) has proven beneficial in proteomics but has not yet been achieved for crosslinked peptides. Here, the authors develop an RT prediction tool for crosslinked peptides and leverage predicted RTs to increase identifications in crosslinking mass spectromet...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9ab330b45697406d85ede559b5464d05 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:9ab330b45697406d85ede559b5464d05 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:9ab330b45697406d85ede559b5464d052021-12-02T15:49:49ZRetention time prediction using neural networks increases identifications in crosslinking mass spectrometry10.1038/s41467-021-23441-02041-1723https://doaj.org/article/9ab330b45697406d85ede559b5464d052021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23441-0https://doaj.org/toc/2041-1723Predicting chromatographic retention times (RTs) has proven beneficial in proteomics but has not yet been achieved for crosslinked peptides. Here, the authors develop an RT prediction tool for crosslinked peptides and leverage predicted RTs to increase identifications in crosslinking mass spectrometry studies.Sven H. GieseLudwig R. SinnFritz WegnerJuri RappsilberNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Sven H. Giese Ludwig R. Sinn Fritz Wegner Juri Rappsilber Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry |
description |
Predicting chromatographic retention times (RTs) has proven beneficial in proteomics but has not yet been achieved for crosslinked peptides. Here, the authors develop an RT prediction tool for crosslinked peptides and leverage predicted RTs to increase identifications in crosslinking mass spectrometry studies. |
format |
article |
author |
Sven H. Giese Ludwig R. Sinn Fritz Wegner Juri Rappsilber |
author_facet |
Sven H. Giese Ludwig R. Sinn Fritz Wegner Juri Rappsilber |
author_sort |
Sven H. Giese |
title |
Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry |
title_short |
Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry |
title_full |
Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry |
title_fullStr |
Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry |
title_full_unstemmed |
Retention time prediction using neural networks increases identifications in crosslinking mass spectrometry |
title_sort |
retention time prediction using neural networks increases identifications in crosslinking mass spectrometry |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/9ab330b45697406d85ede559b5464d05 |
work_keys_str_mv |
AT svenhgiese retentiontimepredictionusingneuralnetworksincreasesidentificationsincrosslinkingmassspectrometry AT ludwigrsinn retentiontimepredictionusingneuralnetworksincreasesidentificationsincrosslinkingmassspectrometry AT fritzwegner retentiontimepredictionusingneuralnetworksincreasesidentificationsincrosslinkingmassspectrometry AT jurirappsilber retentiontimepredictionusingneuralnetworksincreasesidentificationsincrosslinkingmassspectrometry |
_version_ |
1718385706476240896 |